

 Navigation

 	
 index

 	
 next |

 	SiteSupra 9.0.1 documentation

Welcome to SiteSupra’s Documentation!

About SiteSupra:

	Why Another CMS

	SiteSupra at a Glance

Installation:

	Software Requirements

	Installing SiteSupra

	Installing and Configuring SiteSupra Demo Site

	Installing and Configuring SiteSupra Core

	Configuring Web Server

Quick Start:

SiteSupra is open source PHP framework and extremely powerful web site
builder bundled with user-friendly CMS.

	Where to Start

	SiteSupra Concepts

	Installing SiteSupra

	Installing and Configuring SiteSupra Demo Site

	Installing and Configuring SiteSupra Core

	Configuring Web Server

Developer’s Guide:

	Why Another CMS

	Installing SiteSupra

	Installing and Configuring SiteSupra Demo Site

	Installing and Configuring SiteSupra Core

	Configuring Web Server

	SiteSupra Concepts

	Standard Packages

	HTTP Kernel and Bootstrap Process

	Dependency Injection

	Command Line Interface

	Database (Doctrine 2) and EntityAudit

	Routing

	Controllers

	Page routing

	Cache

	Blocks and Editables

	Templating

	Development and Production

	Security

Cookbook Articles:

	Creating Custom Block

	Creating a CRUD

	Creating Custom Controller

	Writing Your Own Command

	Creating Sample CMS Package

CMS:

	SiteSupra User Manual

Reference:

	Standard Blocks

Indices and Tables

	Index

	Search Page

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Why Another CMS

SiteSupra combines a powerful web framework and an elegant CMS to allow developing and managing websites easily. Developers will enjoy SiteSupra while building simple websites or large, feature-rich web apps. Website editors will love SiteSupra because of advanced CMS features packed into unique elegant and simple interface. While there are many great web frameworks and good CMS products separately there are few products that offer those qualities together. SiteSupra is on the mission to bring the best of both worlds in a single product.

Is SiteSupra the right tool for my website?

SiteSupra is based on many years of research and development into web frameworks, CMS usability, and now is able to offer solutions for almost any task:

[image: ../_images/image33.png]
Corporate and enterprise websites

Build full-scale multilingual, multi-country websites with ability to maintain a single set of features and localized content, control page localization status, setup content editors access rights and approval workflow.

[image: ../_images/image34.png]
Promo websites

Develop and manage landing pages or one-pagers easily by setting up HTML into a page template and dragging and dropping required page widgets quickly.

[image: ../_images/image35.png]
Web applications

SiteSupra offers a powerful development framework and an array of internal managers that will allow you developing even very sophisticated web applications easily.

What will be my benefits if I will use SiteSupra?

Beautiful CMS

SiteSupra will add a great value to your website by making website editors fall in love with the CMS. Intuitive, elegant, beautifully-designed, it will allow your clients doing sophisticated website maintenance tasks easily thanks to Word-like visual interface that covers not only text editing, but website structure, page widget functionality and back-office applications management.

[image: ../_images/image36.png]
Industry-standard development approach

There’s no learning curve developing with SiteSupra if you are familiar with Symfony and Doctrine components. SiteSupra goal is to allow you developing advanced application using well-known PHP components instantly.

[image: ../_images/image37.png]
Reusable drag-and-drop page widgets

Code a page block once and drag-and-drop it anywhere on the site and reuse later in other websites. SiteSupra ships with expanding selection of widgets to allow you creating and managing website handily.

[image: ../_images/image38.png]
Rich CMS and back-office features

Enjoy advanced CMS features as page versions, scheduled publish and undo history all packed in a beautiful UI accessible without any learning by regular business users. In case of an enterprise environment set up access rights to internal applications or website pages and maintain role-based approval workflow.

[image: ../_images/image39.png]
Extensive modification capacity

Implement your own logic where needed through custom routes and controllers. SiteSupra has no limitations whether you decide to build a responsive themes or not - it’s only a matter of how you code HTML.

[image: ../_images/image40.png]

What else will I get?

Customisation

We will be glad to help you developing custom SiteSupra extensions, blocks and modules to enhance your website and bring it to your requirements in the most effective way.

Integration

Shall you require help developing SiteSupra-based website or web application to your unique requirements we will be happy to assist through all development cycle starting with front-end development to SiteSupra blocks and modules.

Support

We offer help and assistance for your SiteSupra development tasks as well for system installation and maintenance.

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

SiteSupra at a Glance

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Software Requirements

Web Server

SiteSupra can run under any web server that supports PHP. We prefer Apache or nginx.
Although, SiteSupra is not fully tested on Windows platform yet.
However, from technical perspective we see no reasons why it may not run well on a WAMP-powered server.

Additional Modules

As many other CMS and frameworks SiteSupra rewrites URLs to hide reference to index.php file and make URLs human readable.
To enable URL rewriting Apache requires mod_rewrite and nginx requires ngx_http_rewrite_module.

PHP

PHP version 5.4 or higher is required.

Database

Communications with the database layer is handled by Doctrine ORM.
However, only MySQL database server is supported at the moment. Install MySQL version 5.1 or later.

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Installing SiteSupra

SiteSupra is based on Symfony components and manages dependencies with composer. The installation process is pretty
straightforward. However, you may consider checking Software Requirements first.

For first time users we would recommend to start with cloning SiteSupra Demo site.
If you would like to contribute feel free to clone SiteSupra core.

Installing and Configuring SiteSupra Demo Site

Cloning SiteSupra Demo Site

SiteSupra source code is hosted at github [https://github.com/SiteSupra/sitesupra].
Clone or checkout SiteSupra into your work folder.

$ git clone https://github.com/sitesupra/sitesupra-demo.git sitesupra

Configuring SiteSupra Demo Site

To configure SiteSupra on your computer follow the next steps :

	Run composer update to update dependencies;

	Create an empty database;

	Copy supra/config.yml.example to supra/config.yml and configure database connection;

	Create tables by running php supra/cli.php doctrine:schema:create

	Setup assets php supra/cli.php assets:publish;

	Load fixtures php supra/cli.php sample:fixtures:load storage/fixtures;

That’s all! Now configure web server of your choice (see chapter Configuring Web Server below) and enjoy SiteSupra.

Installing and Configuring SiteSupra Core

If you would like to contribute to SiteSupra project consider to checkout SiteSupra core.
Please note SiteSupra core doesn’t contain any web site or blocks.
You may need to add and configure them by yourself.

Cloning SiteSupra Core

SiteSupra source code is hosted at github [https://github.com/SiteSupra/sitesupra].
Clone or checkout SiteSupra into your work folder.

$ git clone https://github.com/sitesupra/sitesupra.git sitesupra

Configuring SiteSupra

To configure SiteSupra on your computer follow the next steps :

	Run composer update to update dependencies;

	Set up web server permissions for storage folder (you can stick to plain old chmod 777 or use ACL approach as Symfony [http://symfony.com/doc/current/book/installation.html#checking-symfony-application-configuration-and-setup] does);

	Create an empty database;

	Copy supra/config.yml.example to supra/config.yml and provide database credentials;

	Create tables by running php supra/cli.php doctrine:schema:create;

	Load initial fixtures by running supra/cli.php supra:bootstrap;

	Publish assets with supra/cli.php assets:publish.

All done! Now just point your web server of choice to web directory in SiteSupra project’s root.

Configuring Web Server

Apache

Point DocumentRoot to the web directory in SiteSupra project’s root.
Allow to follow symlinks and configure rewrite rules as listed below.

Options +FollowSymlinks

RewriteEngine On

RewriteCond %{DOCUMENT_ROOT}%{REQUEST_FILENAME} -f

RewriteRule ^ - [L,NS]
RewriteRule ^.*$ /index.php$0 [L,NS]

Rewrite rules for .htaccess are provided in .htaccess file that comes along with SiteSupra source code.

nginx

Point root to the web directory in SiteSupra project’s root.
Configure rewrite rules as shown below:

location / {
 try_files $uri $uri/ /index.php;
}

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Where to Start

	SiteSupra at a glance

	Installation

	Building your first SiteSupra web site

Tip

no tips yet.

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

SiteSupra Concepts

Please document what is an application (in controller context)

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Installing SiteSupra

SiteSupra is based on Symfony components and manages dependencies with composer. The installation process is pretty
straightforward. However, you may consider checking Software Requirements first.

For first time users we would recommend to start with cloning SiteSupra Demo site.
If you would like to contribute feel free to clone SiteSupra core.

Installing and Configuring SiteSupra Demo Site

Cloning SiteSupra Demo Site

SiteSupra source code is hosted at github [https://github.com/SiteSupra/sitesupra].
Clone or checkout SiteSupra into your work folder.

$ git clone https://github.com/sitesupra/sitesupra-demo.git sitesupra

Configuring SiteSupra Demo Site

To configure SiteSupra on your computer follow the next steps :

	Run composer update to update dependencies;

	Create an empty database;

	Copy supra/config.yml.example to supra/config.yml and configure database connection;

	Create tables by running php supra/cli.php doctrine:schema:create

	Setup assets php supra/cli.php assets:publish;

	Load fixtures php supra/cli.php sample:fixtures:load storage/fixtures;

That’s all! Now configure web server of your choice (see chapter Configuring Web Server below) and enjoy SiteSupra.

Installing and Configuring SiteSupra Core

If you would like to contribute to SiteSupra project consider to checkout SiteSupra core.
Please note SiteSupra core doesn’t contain any web site or blocks.
You may need to add and configure them by yourself.

Cloning SiteSupra Core

SiteSupra source code is hosted at github [https://github.com/SiteSupra/sitesupra].
Clone or checkout SiteSupra into your work folder.

$ git clone https://github.com/sitesupra/sitesupra.git sitesupra

Configuring SiteSupra

To configure SiteSupra on your computer follow the next steps :

	Run composer update to update dependencies;

	Set up web server permissions for storage folder (you can stick to plain old chmod 777 or use ACL approach as Symfony [http://symfony.com/doc/current/book/installation.html#checking-symfony-application-configuration-and-setup] does);

	Create an empty database;

	Copy supra/config.yml.example to supra/config.yml and provide database credentials;

	Create tables by running php supra/cli.php doctrine:schema:create;

	Load initial fixtures by running supra/cli.php supra:bootstrap;

	Publish assets with supra/cli.php assets:publish.

All done! Now just point your web server of choice to web directory in SiteSupra project’s root.

Configuring Web Server

Apache

Point DocumentRoot to the web directory in SiteSupra project’s root.
Allow to follow symlinks and configure rewrite rules as listed below.

Options +FollowSymlinks

RewriteEngine On

RewriteCond %{DOCUMENT_ROOT}%{REQUEST_FILENAME} -f

RewriteRule ^ - [L,NS]
RewriteRule ^.*$ /index.php$0 [L,NS]

Rewrite rules for .htaccess are provided in .htaccess file that comes along with SiteSupra source code.

nginx

Point root to the web directory in SiteSupra project’s root.
Configure rewrite rules as shown below:

location / {
 try_files $uri $uri/ /index.php;
}

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Why Another CMS

SiteSupra combines a powerful web framework and an elegant CMS to allow developing and managing websites easily. Developers will enjoy SiteSupra while building simple websites or large, feature-rich web apps. Website editors will love SiteSupra because of advanced CMS features packed into unique elegant and simple interface. While there are many great web frameworks and good CMS products separately there are few products that offer those qualities together. SiteSupra is on the mission to bring the best of both worlds in a single product.

Is SiteSupra the right tool for my website?

SiteSupra is based on many years of research and development into web frameworks, CMS usability, and now is able to offer solutions for almost any task:

[image: ../_images/image33.png]
Corporate and enterprise websites

Build full-scale multilingual, multi-country websites with ability to maintain a single set of features and localized content, control page localization status, setup content editors access rights and approval workflow.

[image: ../_images/image34.png]
Promo websites

Develop and manage landing pages or one-pagers easily by setting up HTML into a page template and dragging and dropping required page widgets quickly.

[image: ../_images/image35.png]
Web applications

SiteSupra offers a powerful development framework and an array of internal managers that will allow you developing even very sophisticated web applications easily.

What will be my benefits if I will use SiteSupra?

Beautiful CMS

SiteSupra will add a great value to your website by making website editors fall in love with the CMS. Intuitive, elegant, beautifully-designed, it will allow your clients doing sophisticated website maintenance tasks easily thanks to Word-like visual interface that covers not only text editing, but website structure, page widget functionality and back-office applications management.

[image: ../_images/image36.png]
Industry-standard development approach

There’s no learning curve developing with SiteSupra if you are familiar with Symfony and Doctrine components. SiteSupra goal is to allow you developing advanced application using well-known PHP components instantly.

[image: ../_images/image37.png]
Reusable drag-and-drop page widgets

Code a page block once and drag-and-drop it anywhere on the site and reuse later in other websites. SiteSupra ships with expanding selection of widgets to allow you creating and managing website handily.

[image: ../_images/image38.png]
Rich CMS and back-office features

Enjoy advanced CMS features as page versions, scheduled publish and undo history all packed in a beautiful UI accessible without any learning by regular business users. In case of an enterprise environment set up access rights to internal applications or website pages and maintain role-based approval workflow.

[image: ../_images/image39.png]
Extensive modification capacity

Implement your own logic where needed through custom routes and controllers. SiteSupra has no limitations whether you decide to build a responsive themes or not - it’s only a matter of how you code HTML.

[image: ../_images/image40.png]

What else will I get?

Customisation

We will be glad to help you developing custom SiteSupra extensions, blocks and modules to enhance your website and bring it to your requirements in the most effective way.

Integration

Shall you require help developing SiteSupra-based website or web application to your unique requirements we will be happy to assist through all development cycle starting with front-end development to SiteSupra blocks and modules.

Support

We offer help and assistance for your SiteSupra development tasks as well for system installation and maintenance.

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Installing SiteSupra

SiteSupra is based on Symfony components and manages dependencies with composer. The installation process is pretty
straightforward. However, you may consider checking Software Requirements first.

For first time users we would recommend to start with cloning SiteSupra Demo site.
If you would like to contribute feel free to clone SiteSupra core.

Installing and Configuring SiteSupra Demo Site

Cloning SiteSupra Demo Site

SiteSupra source code is hosted at github [https://github.com/SiteSupra/sitesupra].
Clone or checkout SiteSupra into your work folder.

$ git clone https://github.com/sitesupra/sitesupra-demo.git sitesupra

Configuring SiteSupra Demo Site

To configure SiteSupra on your computer follow the next steps :

	Run composer update to update dependencies;

	Create an empty database;

	Copy supra/config.yml.example to supra/config.yml and configure database connection;

	Create tables by running php supra/cli.php doctrine:schema:create

	Setup assets php supra/cli.php assets:publish;

	Load fixtures php supra/cli.php sample:fixtures:load storage/fixtures;

That’s all! Now configure web server of your choice (see chapter Configuring Web Server below) and enjoy SiteSupra.

Installing and Configuring SiteSupra Core

If you would like to contribute to SiteSupra project consider to checkout SiteSupra core.
Please note SiteSupra core doesn’t contain any web site or blocks.
You may need to add and configure them by yourself.

Cloning SiteSupra Core

SiteSupra source code is hosted at github [https://github.com/SiteSupra/sitesupra].
Clone or checkout SiteSupra into your work folder.

$ git clone https://github.com/sitesupra/sitesupra.git sitesupra

Configuring SiteSupra

To configure SiteSupra on your computer follow the next steps :

	Run composer update to update dependencies;

	Set up web server permissions for storage folder (you can stick to plain old chmod 777 or use ACL approach as Symfony [http://symfony.com/doc/current/book/installation.html#checking-symfony-application-configuration-and-setup] does);

	Create an empty database;

	Copy supra/config.yml.example to supra/config.yml and provide database credentials;

	Create tables by running php supra/cli.php doctrine:schema:create;

	Load initial fixtures by running supra/cli.php supra:bootstrap;

	Publish assets with supra/cli.php assets:publish.

All done! Now just point your web server of choice to web directory in SiteSupra project’s root.

Configuring Web Server

Apache

Point DocumentRoot to the web directory in SiteSupra project’s root.
Allow to follow symlinks and configure rewrite rules as listed below.

Options +FollowSymlinks

RewriteEngine On

RewriteCond %{DOCUMENT_ROOT}%{REQUEST_FILENAME} -f

RewriteRule ^ - [L,NS]
RewriteRule ^.*$ /index.php$0 [L,NS]

Rewrite rules for .htaccess are provided in .htaccess file that comes along with SiteSupra source code.

nginx

Point root to the web directory in SiteSupra project’s root.
Configure rewrite rules as shown below:

location / {
 try_files $uri $uri/ /index.php;
}

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

SiteSupra Concepts

Please document what is an application (in controller context)

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Standard Packages

Core

Not much of a package but SiteSupra itself. It contains core classes and definitions of SiteSupra framework.

Cms

SiteSupra CMS by itself. This package contains controllers, routing, entities and frontend assets that are used
throughout CMS backend.

CmsAuthentication

SiteSupra authentication layer is separated in CmsAuthentication bundle. It sets up ``SecurityContext11 and handles backend
user authentication. It is not suitable for front-end user authentication.

DebugBar

Integrates PHP DebugBar [http://phpdebugbar.com/] into SiteSupra allowing you to monitor requests, their time lines, SQL queries, events, and much more.
This package is active only when SiteSupra runs in debug mode.

Framework

This package combines and integrates everything together. It sets up Doctrine, EntityAudit, Twig, and all other
components required to run SiteSupra. It also registers most of the commands that you can access from Command Line Interface.

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

HTTP Kernel and Bootstrap Process

Note

SiteSupra does not use HttpKernel [https://github.com/symfony/HttpKernel].
We had eight versions of SiteSupra before moving to Symfony. Unfortuantely, no all of the Symfony concepts do suit our needs well.
Our implementation is still a bit incomplete, especially RequestStack and forwarding, so expect refactoring soon.

SiteSupra uses plain HttpFoundation component (see documentation of HttpFoundation [https://github.com/symfony/HttpFoundation]
and HTTP requests in symfony [http://symfony.com/doc/current/book/http_fundamentals.html#requests-and-responses-in-symfony]
for more information).

SiteSupra mimics Symfony behaviour as close as possible - a Request object is created, every controller returns
Response (read more on controllers here).
Basically, request processing happens in the following order:

	Web server hits entry point webroot/index.php;

	SiteSupra builds container, buildContainer() is called;

	SiteSupra boots, boot() is called. Two events are fired at that moment - Supra::EVENT_BOOT_START and Supra::EVENT_BOOT_END. Method boot() is called for every registered package, allowing early initialization;

	Request handling starts by calling handleRequest($request). This method loads Supra\Core\Kernel\HttpKernel and calls handle(). Request handling by HttpKernel traverses through stages below:

	KernelEvent::REQUEST is thrown. Request processing stops when there is at least one event configured for response to RequestResponseEvent. Request object is returned;

	Kernel tries to resolve controller and action by checking _controller and _action parameters of request AttributeBag; if found, controller is instantiated, action is called and HttpKernel expects Controller to return a Response. This is used when forwarding requests or instantiating requests without a route;

	If controller is not resolved yet kernel loads routing and tries to find current route. AttributeBag is overwritten by one created from route configuration and controller is actually executed. KernelEvent::CONTROLLER_START and KernelEvent::CONTROLLER_END events are fired, and any listener can override response during KernelEvent::CONTROLLER_END event. If any exception (generic or ResourceNotFoundException) is thrown request processing moves to exceptions processing (see stage 5 below);

	Kernel fires final KernelEvent::RESPONSE event and returns resulting Response object. Exception is thrown when the object is not an instance of Response;

	If any exception is caught during request processing, then the exception is processed in the following way:

	Kernel fires KernelEvent::EXCEPTION event (again, if any listener provides Response inside this exception event, then the response is returned);

	If exception is instance of ResourceNotFoundException, a special event is fired - KernelEvent::ERROR404, which allows, for example, on-the-fly compilation of assets. Finally, if no response is available after the event is processed, the exception is re-thrown (in debug mode) or exception404Action of default exception controller (stored in container under exception.controller key) is called;

	If there’s still and exception and no response, an exception is re-thrown (in debug mode) or exception500Action of default exception controller (stored in container under exception.controller key) is called.

	Resulting response is sent to the browser (by calling send() method)). Any unhandled exception is caught by Debug [http://symfony.com/doc/current/components/debug/introduction.html] component;

	SiteSupra shuts down firing Supra::EVENT_SHUTDOWN_START and Supra::EVENT_SHUTDOWN_END events and calls shutdown() method of all registered packages, thus allowing some late cleanup.

As you can see, this process is pretty simple and transparent. Last thing to note must be a SupraJsonResponse class
that is used throughout CMS backend for passing messages, warnings, and errors to frontend in a common way.
See the class source code to learn more on messaging process.

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Dependency Injection

Core Concepts

SiteSupra Dependency Injection layer or DI in short is based on Pimple [http://pimple.sensiolabs.org/].
If you’re curious about what DI is you can read the following Wiki articles:

	Inversion of control [http://en.wikipedia.org/wiki/Inversion_of_control];

	Dependency injection [http://en.wikipedia.org/wiki/Dependency_injection].

We also recommend read Symfony’s documentation [http://symfony.com/doc/current/book/service_container.html] about basic DI principles.

SiteSupra main container class is Supra\Core\DependencyInjection\Container.
It extends Pimple’s Container [https://github.com/silexphp/Pimple/blob/master/src/Pimple/Container.php], implements SiteSupra’s
Supra\Core\DependencyInjection\ContainerInterface, implements some hard-coded methods (remember, we’re a CMS, and
not a full-stack framework, some items like Doctrine or Cache are always present), and provides parameters
handling.

Note

It’s almost certain that we will drop hard-coded getters later and build container definition on-the-fly in the
same way Symfony does.

Everything is simple, right? Last but not least to note would be that any object implementing
Supra\Core\DependencyInjection\Container\ContainerAware will be provided with Container on instantiation
(calling setContainer).

Container Building Process

Note

The code will be refactored soon.

SiteSupra core class (Supra\Core\Supra, extending Supra\Core\DependencyInjection\ContainerBuilder) builds and
returns Container object during call to buildContainer. This is done in the following steps:

	Pre-setting some basic variables and objects (like directories, HttpFoundation [https://github.com/symfony/HttpFoundation] objects, Command Line Interface, and so on);

	Injecting packages (allowing to expose their basic configuration);

	Building configuration (there the configuration is being validated, default values set, container parameters are substituted, and so on);

	Finishing configuration when packages can override or extend config values of other packages;

	Firing Supra::EVENT_CONTAINER_BUILD_COMPLETE event.

Package Integration and Two-pass Container Building

First of all, a package needs to be registered. This is done by overriding registerPackages in SupraApplication
class (located in supra/SupraApplication.php). This method simply returns array of package instances, like in the example below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	<?php

use Supra\Core\Supra;

class SupraApplication extends Supra
{
 protected function registerPackages()
 {
 return array(
 new \Supra\Package\Framework\SupraPackageFramework(),
 new \Supra\Package\Cms\SupraPackageCms(),
 new \Supra\Package\CmsAuthentication\SupraPackageCmsAuthentication(),
 new \Supra\Package\DebugBar\SupraPackageDebugBar(),

 new \Sample\SamplePackage()
);
 }
}

Each package must extend Supra\Core\Package\AbstractSupraPackage.
You can override any of the following methods to alter SiteSupra behavior:

	boot() method will be called during SiteSupra boot, see HTTP Kernel and Bootstrap Process;

	inject(ContainerInterface $container) method will be called during Container building in package injection phase (see above);

	finish(ContainerInterface $container) method will be called finishing Container build after the configuration is processed;

	shutdown() method will be called during SiteSupra shutdown, see HTTP Kernel and Bootstrap Process.

Package Configuration

As mentioned above package configuration may occur in two phases - injection phase and finishing phase. Let’s look at both of them starting from inject():

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	<?php

public function inject(ContainerInterface $container)
{
 $this->loadConfiguration($container);

 $container->getConsole()->add(new DoFooBarCommand());

 $container[$this->name.'.some_service_name'] = function (ContainerInterface $container) {
 return new SomeService();
 };

 if ($container->getParameter('debug')) {
 //prepare some extended logging, for example
 }
}

The most important call would be $this->loadConfiguration() (line 5). This method loads configuration file (by
default it is Resources/config/config.yml). To load your own configuration pass the file name to the method as a second parameter .

This call parses config file, processes the configuration using package configuration definition (more on that on
Symfony configuration component article [http://symfony.com/doc/current/components/config/definition.html]), and stores
the values for further processing.

Later you can access already defined services (see line line 7, which though is not a very good approach since it
instantiates the service), add your own service definitions (lines 9-11), and access container parameters (line 13).

Each package has it’s own configuration definition. Concrete configuration object is created during call to getConfiguration()
method. By default, if there is a package named SupraPackageFooBar in namespace Com\Package\FooBar, then the method will search
for configuration definition SupraPackageFooBarConfiguration in namespace Com\Package\FooBar\Configuration. Of
course, you can always override you package’s method getConfiguration() and implement your own logic.

The configuration class should extend Supra\Core\Configuration\AbstractPackageConfiguration and implement
ConfigurationInterface. This forces you to implement function getConfigTreeBuilder(), returning instance of
Symfony\Component\Config\Definition\Builder\TreeBuilder. If you’re curious about what is a TreeBuilder and how
exactly the configuration is being defined, please read Defining a Hierarchy of Configuration Values Using the TreeBuilder [http://symfony.com/doc/current/components/config/definition.html#defining-a-hierarchy-of-configuration-values-using-the-treebuilder]
on official Symfony documentation web site. Let’s take configuration of SupraPackageFrameworkConfiguration as an example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	<?php

class SupraPackageFrameworkConfiguration extends AbstractPackageConfiguration implements ConfigurationInterface
{
 /**
 * Generates the configuration tree builder.
 *
 * @return \Symfony\Component\Config\Definition\Builder\TreeBuilder The tree builder
 */
 public function getConfigTreeBuilder()
 {
 $treeBuilder = new TreeBuilder();

 $treeBuilder->root('framework')
 ->children()
 ->append($this->getAuditDefinition())
 //some other definitions are skipped for illustrative purposes
 ->append($this->getServicesDefinition())
 ->end();

 return $treeBuilder;
 }

 public function getAuditDefinition()
 {
 $definition = new ArrayNodeDefinition('doctrine_audit');

 $definition->children()
 ->arrayNode('entities')
 ->prototype('scalar')->end()
 ->end()
 ->arrayNode('ignore_columns')
 ->prototype('scalar')->end()
 ->end()
 ->end();

 return $definition;
 }
}

Root node (line 14) must match your package name. The rest of configuration definition is standard for
Symfony-based applications (lines 24-38), except for call of ->append($this->getServicesDefinition()), which is
inherited from AbstractPackageConfiguration and enables parsing of services section of your configuration file.

Package configuration files are simple yml files as shown below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	services:
 supra.framework.session_storage_native:
 class: \Symfony\Component\HttpFoundation\Session\Storage\NativeSessionStorage
 parameters: [[], "@supra.framework.session_handler_doctrine"]
 supra.framework.session_handler_doctrine:
 class: \Supra\Package\Framework\Session\DoctrineSessionHandler
#some config parts are skipped for illustrative purposes
doctrine:
 #some config parts are skipped for illustrative purposes
 credentials:
 hostname: localhost
 username: root
 password: ~
 charset: utf8
 database: supra9
 connections:
 default:
 host: %framework.doctrine.credentials.hostname%
 user: %framework.doctrine.credentials.username%
 password: %framework.doctrine.credentials.password%
 dbname: %framework.doctrine.credentials.database%
 charset: %framework.doctrine.credentials.charset%
 driver: mysql
 event_manager: public
 entity_managers:
 public:
 connection: default
 event_manager: public
 default_entity_manager: public
 default_connection: default
doctrine_audit:
 entities: []
 ignore_columns:
 - created_at
 - updated_at
 - lock

Lines 1-6 define services. Key is service ID, ‘class’ defines class name and ‘parameters’ section enables setter injection
(note that you can inject other services referenced with ‘@’ as shown in line 4). Setter injection is not yet supported.

First level keys will become container parameters prefixed with package name. In the example above,
container parameters are ‘framework.doctrine’ and ‘framework.doctrine_audit’, and you can call something like
$container->getParameter('framework.doctrine_audit')['entities'] later in your code.

You may also reference any parameter using percent notation (%parameter.name%). In the example above, line 18
references value from line 11, possibly overridden by another package or main SiteSupra’s config.yml.

After calling inject() method of all packages, container builder merges configuration values (also replacing /
referencing parameters), and starts calling finish() method of all packages, in load order. You finish() method
can look like so:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	<?php

public function finish(ContainerInterface $container)
{
 //extend some other package service
 $container->extend('some.other.service', function ($originalService, $container) {
 $originalService->callSomeMethod();

 return new SomeWrapper($originalService);
 };

 $doctrineConfig = $container->getParameter('framework.doctrine');

 //processed configuration from example above. with merged parameters and optionally overridden by main config.yml
 $connectionDetails = $doctrineConfig['connections']['default'];
}

So, summing up:

	You define your configuration in inject() method;

	Container processes your configuration and merges it;

	You retrieve processed values from container in finish() method and define your services;

	Resulting container is available throughout SiteSupra.

Main SiteSupra Configuration File (config.yml)

Default SiteSupra configuration file supra/config.yml.example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	cms:
 active_theme: default
framework:
 doctrine:
 credentials:
 hostname: localhost
 username: root
 password: ~
 charset: utf8
 database: supra9
cms_authentication:
 users:
 shared_connection: null
 user_providers:
 doctrine:
 supra.authentication.user_provider.public:
 em: public
 entity: CmsAuthentication:User
 provider_chain: [doctrine.entity_managers.public]

Top-level keys correspond to package names, corresponding values are deep-merged with default values resolved in injection
phase. Here you can see how default ‘doctrine.configuration’ values are merged with defaults from SupraPackageFramework;
any part of configuration can be overridden.

Container Parameter Handling, Parameter Substitution

Parameters are SiteSupra-specific extension to Pimple. Basically they represent simple key-value storage (with all
the getters and setters. Refer to Supra\Core\DependencyInjection\Container for more information. However, some
of the methods are worth to be noted separately:

	replaceParameters searches array of data and replaces all parameters enclosed in percent signs (like %foo.bar%) to their respective values;

	replaceParametersScalar replaces all parameters enclosed in percent signs (like %foo.bar%) to their respective values in a scalar variable (string);

	getParameter threads dots inside parameter name as internal array keys (thus allowing you to call $container->getParameter('foo.bar.buz.example') instead of $container->getParameter('foo.bar')['buz']['example']).

Standard Container Parameters

Standard container parameters that can help you in development process are listed below.

Directories

There is a number of container parameters reflecting SiteSupra directory structure:

	directories.project_root for project root folder (with composer.json and other core files);

	directories.supra_root for directory where Supra.php and config.yml reside;

	directories.storage for storage folder;

	directories.cache for cache folder (inside storage root);

	directories.web for webroot (this is where SiteSupra entry point, index.php, is);

	directories.public for asset root, Resources\public folders of every package are symlinked there.

Environments and Debugging

Some parameters are affected by current development settings:

	environment shows current environment - currently on of cli, prod, or dev;

	debug shows current debug state - either true or false.

Service Definition

Adding ->addServiceDefinition() to package configuration will allow that package to define services.
Service definition has to reside under section services in configuration file.

A simple service definition contains service id and class name:

	1
2
3

	services:
 locale.manager:
 class: \Supra\Core\Locale\LocaleManager

you can provide constructor arguments as an array:

	1
2
3
4

	services:
 supra.doctrine.event_subscriber.table_name_prefixer:
 class: \Supra\Core\Doctrine\Subscriber\TableNamePrefixer
 parameters: ['su_', '']

or even use container parameters as arguments:

	1
2
3
4

	services:
 supra.framework.session_storage_native:
 class: \Symfony\Component\HttpFoundation\Session\Storage\NativeSessionStorage
 parameters: [[], "@supra.framework.session_handler_doctrine"]

Unfortunately, caller injections are not possible with SiteSupra yet. But still you can use common Pimple’s approach
during inject() or finish():

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	<?php

$container['some.service'] = function ($container) use ($dependency1, $dependency2) {
 $service = new SomeService($dependency1);

 $service->setDependency2($dependency2);

 $service->intialize();

 return $service;
};

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Command Line Interface

General Concepts

SiteSupra uses Symfony console component [http://symfony.com/doc/current/components/console/introduction.html] for console operations. Boris [https://github.com/d11wtq/boris] is used for REPL shell.

The main console executable is supra/cli.php. Running it without parameters (like php supra/cli.php) will give
you a list of all available commands.

By default CLI loads with cli environment and debugging enabled.

CLI Events

You can use events in your console application; you can use Symfony\Component\Console\Event\ConsoleEvent or
Supra\Core\Event\ConsoleEvent (providing methods getData/setData) for such cases. Currently, there’s only one
CLI-only event in SiteSupra, Supra\Package\Framework\Event\FrameworkConsoleEvent::ASSETS_PUBLISH, provided by
SupraPackageFramework, that is fired running supra/cli.php assets:publish. This event can be used to copy some
non-standard assets to your webroot (to simplify things, you can implement Supra\Core\Event\ConsoleEventListenerInterface
for your listener and use webRoot and webRootPublic keys of $assetsPublishEvent->getData() to determine copy
locations).

Core Commands

SiteSupra does not provide any built-in commands itself; on a plain installation you have help and list commands,
that are standard for Symfony Console. Only two argumens (--env, or -e, for environment, defaulting to cli,
and --debug, defaulting to true), are present.

Package Commands

SupraPackageCms

This package does not provide any CLI commands.

SupraPackageCmsAuthentication

This package provides the following commands:

	groups:add

	groups:list

	groups:remove

	groups:update

	users:add

	users:list

	users:remove

	users:update

these are self-explanatory and documented inline (try, for example, supra/cli.php help groups:update - you’ll like
it!).

SupraPackageDebugBar

This package does not provide any CLI commands.

SupraPackageFramework

assets:publish

Each package can contain assets (in Resources\public directory). Publishing assets means that this directory
will be symlinked (sorry, no hard copy option yet) into web/public/PACKAGE_NAME. Supra cleans up package name, so
assets from SupraPackageCms will we symlinked into web/public/cms, enabling you to access them from the frontend.

cache:clear

Clears SiteSupra cache. Cleans up all cache entries, if no argument is provided, or a particular segment. For more
information SiteSupra cache see Cache chapter of this manual.

cache:list

Shows info about SiteSupra cache and segments:

+----------------+-------+-------+
| Directory | Size | Files |
+----------------+-------+-------+
assets_404	0.13M	14
cms_assets	1.80M	2
combo	1.06M	27
config	0.04M	8
doctrine	0.04M	5
frontend_cache	0.02M	1
twig	0.02M	7
+----------------+-------+-------+

container:dump

Dumps information about container parameters and services:

Container parameters:
+---+---+
| Parameter | Value |
+---+---+
directories.supra_root	/home/developer/www/composer-test/supra
directories.project_root	/home/developer/www/composer-test
directories.storage	/home/developer/www/composer-test/storage
directories.cache	/home/developer/www/composer-test/storage/cache
directories.web	/home/developer/www/composer-test/web
directories.public	/home/developer/www/composer-test/web/public
environment	cli
debug	TRUE
cms.media_library_known_file_extensions	array
results truncated...	
+---+---+	
Container services:	
+--+	
ID	
+--+	
application	
config.universal_loader	
routing.router	
kernel.kernel	
exception.controller	
http.request	
cache.driver	
cache.cache	
results truncated...	
+--+

container:packages:list

Lists enabled Packages (showing both package name and class).

Doctrine-specific commands

The following commands are directly mapped the their Doctrine counterparts [http://doctrine-orm.readthedocs.org/en/latest/reference/tools.html]:

	doctrine:cache-clear:metadata

	doctrine:cache-clear:query

	doctrine:cache-clear:result

	doctrine:convert-encodings

	doctrine:generate:proxies

	doctrine:schema:create

	doctrine:schema:drop

	doctrine:schema:update

Please refer to Doctrine documentation [http://doctrine-orm.readthedocs.org/en/latest/reference/tools.html] should you need help on that.

framework:routing:list

Displays all registered routes, patterns, resulting controller, and whether the route is exported to fronted:

Defined routes:
+--------------------------------------+---+------------------------------------+----------+
| Name | Pattern | Controller | Frontend |
+--------------------------------------+---+------------------------------------+----------+
framework_combo	/_framework_internal/combo/{paths}	Framework:Combo:combo	No
framework_routes	/_framework_internal/routes	Framework:Routing:export	No
cms_dashboard	/backend	Cms:Dashboard:index	Yes
cms_dashboard_applications_list	/backend/applications-list	Cms:Dashboard:applicationsList	Yes
results truncated...			
+--------------------------------------+---+------------------------------------+----------+

supra:bootstrap

Creates default user (username admin, password admin) and loads some initial templates so you can access
backend and create new pages.

supra:shell

Launches REPL shell, with pre-set $container and $application variables. You can play around with some SiteSupra
code without having debug controllers:

[1] supra> $container->getRouter()->generate('cms_dashboard');
// '/backend'
[2] supra>

supra:nested_set:check

Warning

Warning! There is a risk of losing your data. Please don’t forget to backup your database prior to running the command.

SiteSupra uses custom NestedSet implementation. It’s quite stable and almost bulletproof, although may need in repair from time to time.

Writing your own Command

See Writing Your Own Command for a complete reference.

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Database (Doctrine 2) and EntityAudit

SiteSupra uses Doctrine ORM [http://www.doctrine-project.org/] for database operations (a nice introduction to Doctrine is
available at Symfony docs [http://symfony.com/doc/current/book/doctrine.html]).

Doctrine Configuration

In most cases you do not need to configure anything but set up database credentials in supra/config.yml. Commonly,
you have to override framework.doctrine parameter only:

	1
2
3
4
5
6
7
8

	framework:
 doctrine:
 credentials:
 hostname: localhost
 username: root
 password: ~
 charset: utf8
 database: supra9

If you need auditing for your project issues, you will have to add them to framework.doctrine_audit.entities, along with
default values, like shown below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	framework:
 doctrine_audit:
 entities:
 Supra\Package\Cms\Entity\Abstraction\Localization
 Supra\Package\Cms\Entity\Abstraction\AbstractPage
 Supra\Package\Cms\Entity\Page
 Supra\Package\Cms\Entity\GroupPage
 Supra\Package\Cms\Entity\Template
 Supra\Package\Cms\Entity\PageLocalization
 Supra\Package\Cms\Entity\PageLocalizationPath
 Supra\Package\Cms\Entity\TemplateLocalization
 Supra\Package\Cms\Entity\Abstraction\Block
 Supra\Package\Cms\Entity\Abstraction\PlaceHolder
 Supra\Package\Cms\Entity\PagePlaceHolder
 Supra\Package\Cms\Entity\TemplatePlaceHolder
 Supra\Package\Cms\Entity\PageBlock
 Supra\Package\Cms\Entity\TemplateBlock
 Supra\Package\Cms\Entity\BlockProperty
 Supra\Package\Cms\Entity\BlockPropertyMetadata
 Supra\Package\Cms\Entity\ReferencedElement\LinkReferencedElement
 Supra\Package\Cms\Entity\ReferencedElement\ImageReferencedElement
 Supra\Package\Cms\Entity\ReferencedElement\ReferencedElementAbstract
 Package\MyCustomPackage\Entity\CustomAuditedEntity

However, this will override previous values and possibly mess other packages. Thus, a better approach would we adding them
during package injection phase:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	<?php

public function inject(ContainerInterface $container)
{
 $frameworkConfiguration = $container->getApplication()->getConfigurationSection('framework');

 //add audited entities
 $frameworkConfiguration['doctrine_audit']['entities'] = array_merge(
 $frameworkConfiguration['doctrine_audit']['entities'],
 array(
 'Package\MyCustomPackage\Entity\CustomAuditedEntity',
)
);

 $container->getApplication()->setConfigurationSection('framework', $frameworkConfiguration);
}

Basically, you can override any package configuration by using getConfigurationSection() and setConfigurationSection().

CLI Commands

Please refer to SiteSupra Command Line Interface for more information. All Doctrine commands known by Symfony are available via SiteSupra CLI.

Standard event listeners

By default SupraPackageFramework defines and initializes Doctrine using it’s own config.yml:

	1
2
3
4
5
6
7
8

	doctrine:
 event_managers:
 public:
 subscribers:
 - supra.doctrine.event_subscriber.table_name_prefixer
 - supra.doctrine.event_subscriber.detached_discriminator_handler
 - supra.doctrine.event_subscriber.nested_set_listener
 - supra.doctrine.event_subscriber.timestampable

subscribers array references the following classes, also defined in config.yml, services section:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	services:
 supra.doctrine.event_subscriber.table_name_prefixer:
 class: \Supra\Core\Doctrine\Subscriber\TableNamePrefixer
 parameters: ['su_', '']
 supra.doctrine.event_subscriber.detached_discriminator_handler:
 class: \Supra\Core\Doctrine\Subscriber\DetachedDiscriminatorHandler
 supra.doctrine.event_subscriber.timestampable:
 class: \Supra\Package\Framework\Doctrine\Subscriber\TimestampableListener
 supra.doctrine.event_subscriber.nested_set_listener:
 class: \Supra\Core\NestedSet\Listener\NestedSetListener

They serve for the following purposes:

	TableNamePrefixer adds prefixes to SiteSupra database tables (currently not-changeable, default su_);

	DetachedDiscriminatorHandler is internal SiteSupra feature. Quite probably we’ll tune it up and document later;

	TimestampableListener listens to changes in entities implementing Supra\Package\Cms\Entity\Abstraction\TimestampableInterface, calls setCreationTime() and setModificationTime if needed;

	NestedSetListener handles changes in SiteSupra’s NestedSet implementation.

If some other package must add other event subscribers, this can be done by overriding SupraPackageFramework configuration
like it is done in SupraPackageCms:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	<?php

public function inject(ContainerInterface $container)
{
 //setting up doctrine
 $frameworkConfiguration = $container->getApplication()->getConfigurationSection('framework');

 $frameworkConfiguration['doctrine']['event_managers']['public'] = array_merge_recursive(
 $frameworkConfiguration['doctrine']['event_managers']['public'],
 array(
 'subscribers' => array(
 'supra.cms.file_storage.event_subscriber.file_path_change_listener',
 'supra.cms.pages.event_subscriber.page_path_generator',
 'supra.cms.pages.event_subscriber.image_size_creator_listener',
)
)
);

 $container->getApplication()->setConfigurationSection('framework', $frameworkConfiguration);
}

You can freely alter any configurations during package injection phase (since actual entity managers and
subscribers are set up only in finishing phase).

Internal Entities and SupraId

Doctrine, by itself, is a very sensitive system. For example, it does not like when you are trying to persist entity that
already has id or restore entities with pre-set foreign keys. However, SiteSupra’s versioning, based on
EntityAudit, does exactly that! Therefore, we are using:

	A custom type, called supraId20 (use @Column(type="supraId20")). That’s currently just a 20 characters length string;

	A custom base entity Supra\Package\Cms\Entity\Abstraction\Entity, which is a @MappedSuperclass, and provides base methods like regenerateId, __clone etc.

SiteSupra Id contains twenty symbols and looks like “018dusx9903wosockckg”, where:

	First 9 symbols are reserved for timestamp converted to base36. Tto be honest, we do not use standard unix timestamps. Our base date is 16 Dec 2011, 11:33:05. That’s the day when supraId was introduced;

	Next two symbols are reserved for internal counter of entities persisted in current session;

	Trailing 9 symbols are just a randomly generates suffix.

Note

This is expected to be refactored to @GeneratedValue(strategy=”CUSTOM”) and @CustomIdGenerator(class=”...”) soon

EntityAudit and Versioning

SiteSupra’s versioning is almost completely based on EntityAudit library. For more inforamtion refer to respective documentation [https://github.com/simplethings/EntityAudit].
We do not override anything there, so this should be enough if you need to implement auditing of your project entities.

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Routing

Loading Routes

SiteSupra routing is heavily based on Symfony’s routing component and uses very similar syntax. However, there are some
minor differences. For example, you have to load all your routing files manually in your package’s inject() method:

	1
2
3
4
5

	<?php

$container->getRouter()->loadConfiguration(
 $container->getApplication()->locateConfigFile($this, 'routes.yml')
);

Function locateConfigFile searches routes.yml in your package’s Resources\config directory.

Common Example

Let’s take a look at some routing definition examples.
The most simple would be SupraPackageFramework main routing file:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	configuration:
 prefix: ~
routes:
 framework_combo:
 pattern: /_framework_internal/combo/{paths}
 controller: Framework:Combo:combo
 requirements:
 paths: .+
 defaults:
 paths: ~
 framework_routes:
 pattern: /_framework_internal/routes
 controller: Framework:Routing:export

configuration section at line 1 defines global prefix and defaults (default parameter values)
keys. prefix must be explicitly defined even with default ~ value.

routes section, starting from line 3, defines actual routes. Each route may contain the following fields:

	pattern defines actual URI that will trigger the route;

	controller specifies the controller (in the example above, Framework:Combo:combo resolves into SupraPackageFramework → ComboController → comboAction (just like Symfony does!);

	filters defines Symfony route filters;

	requirements here you can specify per-parameter regex requirements;

	defaults provides default parameter values;

	options at the moment supports frontend key only.

where only pattern and controller are required.

Tip

Due to the fact SiteSupra’s routing is based on Symfony Routing component [http://symfony.com/doc/current/components/routing/introduction.html], everything written in Symfony documentation applies to SiteSupra as well - we did not reinvent the wheel here.

Container Parameters and JavaScript

Let’s see a bit more complicated example from SupraPackageCms:

	1
2
3
4
5
6
7
8

	configuration:
 prefix: ~
routes:
 cms_dashboard:
 pattern: %cms.prefix%
 controller: Cms:Dashboard:index
 options:
 frontend: true

First of all, you can use container parameters (in %container.parameter.name% form) in your route pattern.
Secondly, you can provide frontend: true option and use in Javascript like this:

	1

	Supra.Url.generate('cms_dashboard');

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Controllers

What are Controllers?

SiteSupra, following Symfony [http://symfony.com], is a request-response framework.
It boots up in a request context, applies business logic to the data provided, creates a response object, and returns result to the client.
In general, requests are mapped through the routing engine to Controllers, which are PHP classes implementing the logic
behind SiteSupra.

Each Package has it’s own set of controllers and routing rules. There is no limit on number
of controllers and actions your web application may have. You may build and group your logic in the way you like.

Controller, Naming, and Routes

Controllers are package - specific classes, extending Supra\Core\Controller\Controller. They must reside in
Controller namespace (like Supra\Package\Framework\Controller). Each controller method should accept Request
and return a Response (more on these classes in Symfony HttpFoundation documentation [https://github.com/symfony/HttpFoundation]).

SiteSupra expect Controller suffix in each Controller name (like FooBarController or UserController) and
Action suffix in each action method (like deleteAction or listAction).

Routes use short syntax (Package:Controller:action). For example, Framework:Routing:export resolves
to SupraPackageFramework (namespace Supra\Package\Framework\Controller), class RoutingController, and method
exportAction (thus, Supra\Package\Framework\Controller\RoutingController::exportAction).

Each action is expected to return a Symfony\Component\HttpFoundation\Response object. Returning scalar value or not
returning any value at all (which is equivalent to return NULL) will cause HttpKernel to throw an exception.

	1
2
3
4
5
6
7
8

	<?php

public function doStuffAction()
{
 // doing stuff here

 return new Response('<html><head><title>Hello!</title</head><body>Hello!</body></html>');
}

Of course, all types of Symfony responses are supported (like JsonResponse, or RedirectResponse). For example, a redirect to another URL could be called in the following way:

	1
2
3
4
5
6
7
8

	<?php

public function doStuffWithRedirectAction()
{
 // doing stuff here

 return new RedirectResponse('http://example.com/');
}

Base Controller Class

SiteSupra provides base class for your controllers, which is Supra\Core\Controller\Controller. First of all, it is
ContainerAware, so you can always access DI Container via $this->container (container instance is set by Http kernel when controller is instantiated).
It’s provided with $package and $application properties, which are set to current package class name (like
Supra\Package\Framework\SupraPackageFramework), and frontend application name (like cms_authentication).

Other handy methods of Controller class are listed below:

	renderResponse renders twig template and returns a Response object;

	render renders twig template and returns result as a string;

	setApplication overrides current application for ApplicationManager (see SiteSupra Concepts for more details);

	getUser returns current user or returns null if there’s no security context, or if the security context does not contain valid token, or if the token does not contain valid user. See Security for more information;

	getPackage returns current package name (without namespace prefix, like Framework);

	checkActionPermission is a security-oriented stub that is not yet ported from legacy SiteSupra code to Symfony’s ACL.

Exceptions

Controllers do not provide any custom exception handling. Instead, any exception is caught by Http kernel.
Depending on current debug settings either trace is written or a special controller
is being called (invoking exception500Action).

A special case is Symfony\Component\Routing\Exception\ResourceNotFoundException, which is forwarded to exception404Action of exception controller,
thus allowing you to show pretty 404 page in production mode.

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Page routing

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Cache

SiteSupra does not provide any public caching interfaces. However, it has an internal cache system that you can use and benefit on.

Cache Class

Cache class (Supra\Core\Cache\Cache, accessible by cache.cache service key or $container->getCache() method) exposes the following methods:

	fetch($prefix, $key, $default, $timestamp, $ttl, $respectDebug) fetches and probably stores value in the cache (if current value was not found). The parameters are explained below:
	$prefix and $key parameters are quite self-explanatory;

	$default value can be a scalar or a callable (checked by is_callable [http://php.net/is_callable]), which is being called only on cache miss;

	$timestamp is a last modification timestamp allowing you to refresh the cache. It’s very handy for storing and combining assets;

	$ttl is a time to live value;

	$respectDebug turns cache off development environment when set to true. Basically, the cache will still work, but the values in there will overwritten with every page request.

	store($prefix, $key, $value, $timestamp, $ttl) directly proxies data to storage driver. If $value is callable, it is invoked;

	delete($prefix, $key) deletes value from driver;

	clear($prefix) deletes all values for particular prefix;

We’ve tried to make the cache as simple as possible, so the common usage pattern with callback looks like the following:

	1
2
3
4
5
6
7
8

	<?php

$result = $container->getCache()->fetch('internal', 'value1', function() use ($container) {
 //this code will be called only on cache miss
 $value = $container['some.service']->doSomeHeavyOperation();

 return $value;
}, filemtime('file.txt'), 3600);

Doctrine Wrapper

Some libraries can use Doctrine Cache [http://doctrine-orm.readthedocs.org/en/latest/reference/caching.html] as a cache layer.
SiteSupra provides wrapper over it’s native cache, DoctrineCacheWrapper, which you can use in the following way:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	<?php

use Supra\Core\Cache\DoctrineCacheWrapper;

$wrapper = new DoctrineCacheWrapper();
$wrapper->setContainer($container);

$wrapper->setPrefix('supra_native_prefix');
$wrapper->setSuffix('doctrine_cache_suffix');

// now you can use $wrapper anywhere in your code
// where instance of CacheProvider is required.
// Supra will respect ``prefix`` that you have set,
// and Doctrine will use ``suffix``

Cache Drivers and Current Implementation

SiteSupra has only one cache driver implemented at the moment. The driver called File stores cached data under storage/cache folder.
The driver creates separate sub-folders for each prefix you define.
There are some cache-specific CLI commands available for cache data management.

More cache drivers to come soon. You can always write your own driver just by implementing Supra\Core\Cache\Driver\DriverInterface interface.

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Blocks and Editables

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Templating

SiteSupra uses Twig [http://twig.sensiolabs.org/] template engine. Nothing unusual, just few things worth to mention:

	There’s one Twig extension, called CmsExtension, that provides functions for preparing CMS JS/CSS assets, and another one, called PageExtension, that manages CMS-specific functions and tags (more on that later);

	Views reside in package’s Resource\view folders, just like in Symfony;

	You can reference template inside a package and use shorthand syntax like {% extends 'SamplePackage:layouts/base.html.twig' %}.

To reference and render a template you can always access Twig environment by calling $container->getTemplating()
or call renderResponse from your controller (package defaults to current package here):

	1
2
3
4
5
6

	<?php

public function indexAction()
{
 return $this->renderResponse('index.html.twig');
}

You can register a custom extension during package injection;

	1
2
3
4
5
6

	<?php

public function inject(ContainerInterface $container)
{
 $container->getTemplating()->addExtension(new PageExtension());
}

PageExtension

To explain PageExtension, we need to discuss two things: PageExecutionContext and BlockExecutionContext (make
sure you’ve read SiteSupra Concepts first).

Both of these objects are simple container classes for objects defining current block or page being executed. Both of them
contain a Request object (plain Request for Blocks and PageRequest for Pages) and a Controller object
(BlockController and PageController accordingly).

Note

As other SiteSupra internal features, this is likely to change in the future.

This extension defines one filter, called decorate that works with internal HtmlTag instances, and a few functions
listed below:

	collection(), and list() resolve property to a collection, example would be writing {% for item in collection(property('image', 'image')) %};

	set() resolves property to a set;

	property() fetches single property from a Block or Page;

	isPropertyEmpty() checks if property value is empty;

	placeHolder() defines a placeholder (see Blocks and Editables and SiteSupra Concepts for more information).

Every function in PageExtension is based on a custom node_class.
This facilitates the process of dynamic creation of block properties when template is parsed.
BlockPropertyNodeVisitor creates block properties on-the-fly.

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Development and Production

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Security

SiteSupra does not provide any kind of authentication for user part of CMS; it only provides authentication and user
management layer for CMS part, decoupled in separate SupraPackageCmsAuthentication (more on standard packages in
corresponding section). So, the documentation below applies only to CMS part, but you can
always add authentication to your website following this cookbook article.

SiteSupra security layer is based on Symfony security component [https://github.com/symfony/Security].

Security Concepts and Configuration

Security is blindly bound to cms.prefix container parameter and secures all URLs beginning that.
URL mapping happens in CmsAuthenticationRequestListener.
When visitor is not authorized yet, then the visitor is being redirected to CMS login page.

Note

We are likely to extend security layer to both backend and frontend - stay tuned!

The second listener, CmsAuthenticationResponseListener, ensures that current Token is stored in user session
under the key defined by cms_authentication.session.storage_key parameter.

SiteSupra dispatches AuthController::TOKEN_CHANGE_EVENT every time a new token is stored in the session.
Voters and ACL’s are enabled, but not used yet.

Default security configuration is stored in Supra\Package\CmsAuthentication\Resources\config\config.yml.
Apart from paths and services, it defines a shared user source (explained below), sets up user providers (bound to
CmsAuthentication:User entity), both combined into provider chain, and sets SupraBlowfishEncoder as a default
password encoder.

CLI Commands

SiteSupra provides some basic user management commands (for adding and removing backend user groups) allowing you
to manage users event if the database is empty. refer to Command Line Interface for more details.

User Source and User Provider

By default SiteSupra uses Supra\Package\CmsAuthentication\Entity\User as base user entity and corresponding repository
(which already implements Symfony\Component\Security\Core\User\UserProviderInterface) as a user source. Again, by
default it is bound to current connection (please refer to Database (Doctrine 2) and EntityAudit if you want to learn more on SiteSupra
database layer).

Shared User Provider

While developing web project it is good to have a shared user database with some default user accounts in there or share users between
SiteSupra installations in production. This is possible by defining a new database connection in main configuration file
(supra\config.yml) under cms_authentication → users → shared_connection as shown in example below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	cms:
 active_theme: default
framework:
 doctrine:
 credentials:
 hostname: localhost
 username: root
 password: ~
 charset: utf8
 database: supra9
cms_authentication:
 users:
 shared_connection:
 host: localhost
 user: root
 password: ~
 charset: utf8
 dbname: supra9_shared_users
 driver: mysql
 event_manager: public
 user_providers:
 doctrine:
 supra.authentication.user_provider.public:
 em: public
 entity: CmsAuthentication:User
 provider_chain: [doctrine.entity_managers.public]

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Creating Custom Block

This tutorial will help you to create a simple block with manageable HTML content.

Note

This tutorial assumes that you’ve already read the section about Blocks and Editables and already have sample CMS Package configured.

Block Configuration

Create a class, that would represent your block configuration.
It should extend abstract BlockConfig class:

	1
2
3
4
5
6
7
8
9

	<?php

namespace MySamplePackage\Blocks;

use Supra\Package\Cms\Pages\Block\Config\BlockConfig;

class MyTextBlock extends BlockConfig
{
}

Override configureAttributes method to define block title and description.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	<?php

namespace MySamplePackage\Blocks;

use Supra\Package\Cms\Pages\Block\Config\BlockConfig;

class MyTextBlock extends BlockConfig
{
 public function configureAttributes(AttributeMapper $mapper)
 {
 $mapper->title('My Text Block')
 ->description('This block provides you WYSIWYG editor.');
 }
}

Create Block Template

Create Twig file named my_text_block.html.twig in Resources/view/blocks/ directory with the following code in there:

	1

	<div>{{ property('my_content', 'html') }}</div>

This will dynamically create block property named 'my_content' and link CMS WYSIWYG editor to that property.

Note

You may override template name by calling $mapper->template('MyPackage:path/to/file.html.twig') inside BlockConfig::configureAttributes() method.

Register Your Block in CMS

The last but not least step is register the block with CMS.
If your package extends AbstractSupraCmsPackage, then just override getBlocks method:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	<?php

namespace MySamplePackage;

use Supra\Package\Cms\AbstractSupraCmsPackage;

class MySamplePackage extends AbstractSupraCmsPackage
{
 ...

 public function getBlocks()
 {
 return array(new Blocks\MyTextBlock());
 }
}

Otherwise, this can be done by calling BlockCollection::addConfig() on package initialization finish.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	<?php

namespace MySamplePackage;

use Supra\Core\Package\AbstractSupraPackage;

class MySamplePackage extends AbstractSupraPackage
{
 ...

 public function finish(ContainerInterface $container)
 {
 $blockCollection = $container['cms.pages.blocks.collection'];
 /* @var $blockCollection \Supra\Package\Cms\Pages\Block\BlockCollection */

 $blockCollection->addConfig(new MyTextBlock(), $this);
 }
}

That’s all. Your block is now registered and should appear in site block list.

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Creating a CRUD

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Creating Custom Controller

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Writing Your Own Command

General Considerations

We would recommend to read Symfony’s guide to creating basic command [http://symfony.com/doc/current/components/console/introduction.html#creating-a-basic-command] prior to proceed further.
SiteSupra mostly follows the same approach with a few minor differences:

	A command must extend Supra\Core\Console\AbstractCommand (or implement Supra\Core\DependencyInjection\ContainerAware), read more about that in Dependency Injection chapter;

	There is no limit on where you can store your commands or what namespace are you using. SiteSupra does not autoload commands, so you are free to choose your class structure.

Basic console command can look like shown below:

<?php

namespace Some\Your\Namespace\Command;

use Supra\Core\Console\AbstractCommand;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;

class FoobarCommand extends AbstractCommand
{
 protected function configure()
 {
 $this->setName('foobar:do')
 ->setDescription('Does some foobar');
 }

 protected function execute(InputInterface $input, OutputInterface $output)
 {
 //foobar is happening here
 }
}

Of course, you can use any of the helpers [http://symfony.com/doc/current/components/console/introduction.html#console-helpers] bundled in Symfony Console - tables, dialogs, and so on.

Registering New Command from Your Package

Let’s assume that you have a Package created (refer to Creating Sample CMS Package for package creating instructions).
Now you can register a new command instance in package’s inject() method:

<?php

namespace Vendor\Package;
use Supra\Core\DependencyInjection\ContainerInterface
use Some\Your\Namespace\Command\FoobarCommand;
use Supra\Core\Package\AbstractSupraPackage;

class FoobarPackage extends AbstractSupraPackage
{
 public function inject(ContainerInterface $container)
 {
 //some magic here...

 $container->getConsole()->add(new FoobarCommand());

 //even more magic here...
 }
}

After that, you can run your command with supra/cli.php foobar:do (shortcuts like supra/cli.php f:d are working also).

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

Creating Sample CMS Package

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SiteSupra 9.0.1 documentation

SiteSupra User Manual

Welcome to the SiteSupra CMS guide. This guide provides comprehensive information on how to organize your SiteSupra site’s content and manage it easily. Free and open source, SiteSupra offers fast and easy website development and makes website editing and administration stress-free thanks to intuitive visual CMS.

Log in

Start by logging into the admin panel of your website. Visit your site’s login page by placing “/backend” after your domain name e.g. http://example.com/backend.
Default login name is admin@sitesupra.org and password is admin.

Initial view

After you logged in, you are on the site’s main page view﻿. This is the Home page of your website. Here your creativity can break out and let you build as lovely website as possible.

	On the upper menu you can do following:

	
	Open the Dashboard;

	Open website’s structure or “Sitemap”;

	Open Page for editing

[image: ../_images/image01.png]
We recommend you to check the demo of Home page and the Blocks to see most of the SiteSupra page and text management features. However, ahead of jumping in and start editing, take a look at the website’s structure by clicking Sitemap icon.

Site Structure

The initial site map is comprised of pages that show content.

[image: ../_images/image02.png]

Site Structure Management

To delete a page

Choose the page you have decided to delete and click the Gears icon. To delete a page click Delete ﻿and confirm requested action by clicking Yes button.

[image: ../_images/image03.png]
[image: ../_images/image04.png]
[image: ../_images/image05.png]

To add a new page

	Click and hold ” + “ icon and drag & drop it to the required location.

[image: ../_images/image06.png]

	When you hold and move the page around the Sitemap the drop location will be marked in blue.

[image: ../_images/image07.png]

	After you drop the page on the desired location a page properties window appears. Specify page Title. You may define Path which is a page name that appears in the page address. ﻿

	Click Template to choose a page template you want. You can go through a wide array of templates.

	When you make your choice, click Create button.

[image: ../_images/image08.png]

	Open created new page and specify required content for page blocks. Then click Publish to the upper right of the window.

[image: ../_images/image09.png]
[image: ../_images/image10.png]
NOTE

If by an accident you have dropped your new page in a wrong place, you can easily change page order in the menu. Simply drag & drop new page to the required place in Sitemap view.

[image: ../_images/image11.png]

Page Settings

Page Settings contains the page editing menu in the upper right pane and here you can specify following:

	Page Title - Page Heading

	Page URL - Page address

	SEO - additional parameters for website optimisation to help perform better in search results.

	Schedule publish - you can schedule a page to publish automatically in the future.

	Redirect - you can redirect your page visitors to other pages or external recources.

	More settings - additional page settings:
	Page status management (active or inactive)

	Page appearance in search results (Yes or No)

	Page appearance in Menu

	Page appearance in Sitemap

	Admission to translate the page

After you have made all the necessary changes, click Save to save changes. To publish final version of the page, click Publish. If you wish to continue working with this page some other time, click Close.

[image: ../_images/image12.png]

Page status

While in a Sitemap view, above the page icons or folders can appear inscription Draft, which means that page was changed, but the changes were not published. This inscription appears whenever you save the changes and close the page with the Close button without Publishing.

[image: ../_images/image13.png]

Main Toolbar options

General editing options are displayed at the top of the menu.

[image: ../_images/image14.png]

	Insert block - to insert new blocks on the page (see full description here [link to blocks])

	Page blocks - displays a list of elements available for editing;

	Page settings - to access and manage page properties
	Page Title

	Page URL

	Template

	SEO

	Schedule publish

	Redirect

	More settings

Main Menu Management

The main menu block automatically picks up pages located under the Home page and builds menu according to the web site styles. If you want your main menu to have a page simply place it under the Home page in the SiteMap. You can drag and drop the pages into this level or rename existing pages. Here’s how:

To change page order in the menu

	You can access Site map by clicking Sitemap or All pages buttons on the page toolbar.

[image: ../_images/image15.png]

	In the Site map, click and hold required page and drag it to the new location.

[image: ../_images/image16.png]

Blocks

Each page consists of several functional widgets, the blocks, which add functions and events to your website. You can edit them by clicking and managing customisations in the block properties which opens on the right. For each block there are different properties, for example, you can add images to the gallery block and set the links for social media follow block.

To add new block

	While in a Sitemap view, select the page you want to edit and click Open.

[image: ../_images/image17.png]

	Click Edit page ﻿button to the upper right of the window.

[image: ../_images/image18.png]

	Click Insert block in the main toolbar, which appears on top of the page. The Insert block panel opens on the left. Then select Features.

[image: ../_images/image19.png]

	Click the block you need and drag & drop it to where you want it in the page.

[image: ../_images/image20.png]

	Specify required content for the block properties. Then click Done and Publish the page.

[image: ../_images/image21.png]

To delete block

If you don’t need a certain block it’s easy to remove it from the page:

	While in a Sitemap view, select the page you want to edit and click Open.

[image: ../_images/image17.png]

	Click Edit page ﻿button to the upper right of the window to start page customisation.

[image: ../_images/image18.png]

	Click the block you want to remove. Block properties panel opens on the right side of window﻿.

	To remove a block click Delete block button.

[image: ../_images/image22.png]

	Confirm your choice and click Yes.

[image: ../_images/image23.png]

	To finish work and save changes, click Publish button to the upper right of the window﻿.

To move blocks within a page

It’s easy to change location of the block on a page, here’s how:

	While in the Sitemap view, select the page you want to edit and click Open.

[image: ../_images/image17.png]

	Click Edit page button to the upper right of the window.

[image: ../_images/image18.png]

	Select the block you want to move by Clicking and holding it with the mouse and move it to the new location. Make sure not to click the block as you will enter in a block editing mode where moving blocks isn’t possible. When you hold and move the block around the page the drop location will be marked in blue.

[image: ../_images/image24.png]

	To finish and save block repositioning changes within a page, click Publish button on right-top of the window.

IMPORTANT:
Blocks are divided into two main categories:

	Global;

	Non-Global.

If a block is Non-Global, it will appear only on pages where it is added manually, but if a block is Global, it will appear on all pages from selected template. These settings you can specify while creating or customising Templates.

Templates

Templates control how your website appears. SiteSupra template provides a method of integration between content and blocks in a specific, controlled view. Site is created by first placing one or more blocks on a template and then creating pages based on those templates. While each template can be configured separately, when adding new pages and selecting template, page will consist of template’s specified design, layout and blocks within placeholders, so you can significantly save the time by creating new pages and content.

While in a Sitemap view, you can switch to Templates editing mode:

[image: ../_images/image25.png]
If you want to create a page with unique set of blocks to implement original page design, you would need to create a separate page template first so that other pages are not affected. Creating page template is easy, you can just duplicate a page template you like.

For example, website consists of three simple pages: Home, Services and Contacts.

[image: ../_images/image26-01.png]
[image: ../_images/image26-02.png]
[image: ../_images/image26-03.png]
Which in templates view will look like this:

[image: ../_images/image27.png]
Where pages are built on basis of:

	Page Home is created from template Home, where Home page content is inherit Header/Footer and Home template content.

	Page Services is created from template Inner, where Services page content is inherit from Header/Footer and Inner templates.

	Page Contacts is created from template Inner, where Contacts page content is inherit from Header/Footer and Inner - the same as for Services.

[image: ../_images/image28.png]
While creating pages, you can customise templates separately by adding necessary blocks to the placeholders.

Dashboard

You can open the Dashboard by clicking the icon on the upper left of the page.

[image: ../_images/image29.png]
The admin panel is very simplistic and from here you can manage Back-office Users, Files or return to Site Structure Management.

[image: ../_images/image30.png]

Back-office Users

You can setup a user account for your website contributors and assign certain privileges. These privileges are known as roles. The following roles exist in the SiteSupra:

	Admins: You can do everything including creating new users and assigning them access rights.﻿

	Supervisors: As a supervisor, you can publish (and unpublish) documents on the website, and approve or disapprove Contributor’s requests for publication.

	Contributors: As a contributor, you can create and edit content in the CMS. When your changes are ready to be published on the website, they have to be approved by a Supervisor.

You can add new users by clicking “+” on the left side and drag-and-drop the icon to necessary role.

[image: ../_images/image31.png]
Then add User Name and E-mail, click Done. New user will receive invitation to become an admin, supervisor or contributor of your site.

[image: ../_images/image32.png]

Files

Program files (Files) app purpose is to gather all uploaded visual information files for further use on the website. This app also allows you to create the directory tree in order to improve your work with files.

General options are displayed at the top of the menu:

	Upload - possibility to upload necessary files

	New Folder - allows to create new directory

	Delete - possibility to delete unnecessary files or directories

Also it is possible to add new files by dragging and dropping them to required folders.
To view image details, click on an image icon. From here you can also Download or Replace the file.

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	SiteSupra 9.0.1 documentation

Standard Blocks

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	SiteSupra 9.0.1 documentation

Index

 A
 | B
 | C
 | D
 | E
 | H
 | I
 | P
 | Q
 | R
 | S
 | T

A

 	

 	Authentication

B

 	

 	Block

 	

 	Creating new block

C

 	

 	Cache

 	CLI

 	
 Command

 	

 	Writing your own command

 	

 	Controllers

 	
 Cookbook

 	

 	Creating a CRUD

 	Creating custom Controller

 	Creating new block

 	Creating sample CMS package

 	Writing your own command

 	CRUD

D

 	

 	Dependency injection

 	Development and Production

 	

 	Doctrine

E

 	

 	Editable

 	

 	EntityAudit

H

 	

 	HTTP kernel

I

 	

 	Index

 	Installation

 	

 	Apache

 	Requirements

 	nginx

 	

 	Internal: Page routing

 	
 Internals

 	

 	Cache

 	Concept

 	Database

 	Dependency injection

 	HTTP kernel

 	Standard packages

P

 	

 	
 Package

 	

 	Creating sample CMS package

 	Page

 	

 	Page Routing

 	Promo

Q

 	

 	Quickstart

R

 	

 	
 Reference

 	

 	Standard blocks

 	

 	Routing

S

 	

 	Security

 	SiteSupra Concepts

 	

 	Software Requirements

T

 	

 	Templating

 	

 	
 Tools

 	

 	CLI

 Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

 _images/image08.png
New Page.

_images/image24.png
CONTACT

We'd really love to hear from you so why not drop us an emailand wefl get back 1o you as soon as we

Thanks! We will contact you shorty!
Namo Emai

CONTACT

S0 why ot drop us

back oy

rhamsTV

6 W Cortact you SFory

_images/image26-03.png
ARTIST NAME

FIND US HERE

OUR ADDRESS

Esplanade.

prezidenta
leja

Svetalpetera baznica (&

Map data 20

SEND US A MESSAGE

SERVICES

_images/image14.png
[T

Insert block Page bi

_images/image23.png
Are you sure you want to delete selected block

]

_images/image06.png
New

Preview
in process

Text page New page

_images/image38.png
LOREM IPSUM

DOLOR SIT AMET

ULTRICES SED IN TRISTIQUE SOLLICITUDIN SIT

_images/image12.png
%ﬁ&

THIS IS DRAVA

_images/image25.png

_images/image20.png
() e T2

= Features DRAVA ELEMENTS

TABS

bt creative agency located in milky way galaxy, earth. praesent rhoncus nunc vitae metus condimentum viverra

Recordion [fartas st etiam proces
bst notare quam littera gol
hurf acula quarta decima et quinta decima.

“Consuetudium Tectorum. Mirum
m, anteposuerititerarum formas

o

LOREM IPSUM

Por Lis enim velit. Ut vel eros id tellus mattis ornare eget ac dui. Proin placerat dolor eu dui
lempus sed tristique risus fringilla. Integer elementum thoncus dolor, sed varius el placerat a
Morbi nec mauris solliitudin turpis ringilla tempor vel nec velit. Fusce in nulla non ibh lacinia
rollis sit amet id dui. Quisque eu arcu nec neque tristique pulvinar.

_images/image26-01.png
ARTIST NAME SERVICES ~ CONTAC

ARTIST
NAME

161212013
LEO VELIT ODIO MASSA NULLAM ID UT AT

Leo velit odio massa nullam id ut at. Interdum
donec ultrices vitae feugiat at amet sollicitudin. Et
duis in vitae nisi eu nunc quisque id et molestie.
Adipiscing vitae, amet maecenas massa non at eu
mi

161212013
LOREM IPSUM DOLOR

EST ULTRICES SED IN TRISTIQUE SOLLICITUDIN
SiTLeo velit odio massa nullam id ut at. Interdum
donec ultrices vitae feugiat at amet sollicitudin. Et
duis in vitae nisi eu nunc quisque id et molestie.
Adipiscing

Leo velit odio massa nullam id
utat. Interdum donec ultrices
vitae feugiat at amet
sollicitudin. Et duis in vitae nisi
eu nunc quisque id et molestie.
Adipiscing vitae.Leo velit odio
massa nullam id ut at.
Interdum donec ultrices vitae

feugiat at amet sollicitudin. Et duis in vitae nisi eu nunc quisque id
et molestie. Et duis in vitae nisi eu nunc quisque id et molestie.

Mauris eget arcu
accumsan, amet, vitae leo
quis pretium, libero,
Risus molestie ut
imperdiet vel ornare sed
velit proin in nibh. it ac

_images/image17.png

_images/image07.png
EE

sndp Toxtrhige

_images/image30.png
All apps

g 4 &

Pages Backoffice Users Files.

_images/image22.png

_images/image19.png
= (E] pages Fomerse EETEEN

_images/image01.png
Home page
Published

Pages

[<] THIS IS DRAVA o

_static/comment-close.png

_images/image36.png
ETS

Google Analytics

_images/image02.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		SiteSupra 9.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

_images/image32.png

_images/image10.png

_images/image05.png
Are you sure you want to delete selected page?

_images/image03.png
New Page (2)

_images/image39.png
Yesterday

16:00 , 16:25 About 2 by Kas)

“This month

15 1554 Senice2 by Kaspar
1554 Service main 2 51
18:55 Simple text p*

_images/image16.png
About Text page Elements Blog

_images/image21.png
Services

PAges o taned

Services

OUR SERVICES
MORBI AT QUAM ACCUMSAN, COMMODO

Title

Services

Services

1 Volutpat nunc aliquet amet duis duis
1 ultrices egestas ac ipsum sit arcu ac
| sagittis consectetur id

Volutpat nunc aliquet amet duis duis
ultrices egestas ac ipsum sit arcu ac
sagittis consectetur id

Volutpat nunc aliquet amet duis duis ~ 1
ultrices egestas ac ipsum sit arcu ac
sagittis consectetur id

_images/image37.png
@Symfony b doctrine

_static/plus.png

_images/image13.png
Welcome.

_static/ajax-loader.gif

_static/file.png

_images/image40.png

_static/up.png

_images/image28.png
B} HOT-publshed

Senvices Shop. Contacts

_static/up-pressed.png

_images/image31.png

_static/down-pressed.png

_images/image18.png
Home page
Published

Pages

_static/down.png

_images/image09.png
New Page (2)

_images/image35.png

_images/image34.png
N
N (.‘

_images/image33.png

_static/minus.png

_static/comment.png

_images/image04.png
Welcome.

Welcome

cookbook/authentication.html

 Navigation

 		
 index

 		SiteSupra 9.0.1 documentation »

How to Enable Authentication on Frontend

 © Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

_images/image15.png

_images/image26-02.png
ARTIST NAME

SERVICES

TYPOGRAPHY

TEXT BLOCKS

SLIDERS

TABS & ACCORIDONS.

GALLERY

SLIDESHOWS

EST ULTRICES SED IN TRISTIQUE
SOLLICITUDIN SIT

_images/image29.png

_images/image27.png
Header / F.

Home Inner

_images/image11.png
T

docs/adding_a_page.html

 Navigation

 		
 index

 		SiteSupra 9.0.1 documentation »

Adding a Page

 © Copyright 2014, SiteSupra.
 Created using Sphinx 1.3.4.

