
SiteSupra Documentation
Release 9.0.1

SiteSupra

February 12, 2016

Contents

1 About SiteSupra: 1

2 Installation: 7

3 Quick Start: 11

4 Developer’s Guide: 13

5 Cookbook Articles: 35

6 CMS: 39

7 Reference: 59

8 Indices and Tables 61

i

ii

CHAPTER 1

About SiteSupra:

1.1 Why Another CMS

SiteSupra combines a powerful web framework and an elegant CMS to allow developing and managing websites
easily. Developers will enjoy SiteSupra while building simple websites or large, feature-rich web apps. Website
editors will love SiteSupra because of advanced CMS features packed into unique elegant and simple interface. While
there are many great web frameworks and good CMS products separately there are few products that offer those
qualities together. SiteSupra is on the mission to bring the best of both worlds in a single product.

1.1.1 Is SiteSupra the right tool for my website?

SiteSupra is based on many years of research and development into web frameworks, CMS usability, and now is able
to offer solutions for almost any task:

Corporate and enterprise websites

Build full-scale multilingual, multi-country websites with ability to maintain a single set of features and localized
content, control page localization status, setup content editors access rights and approval workflow.

1

SiteSupra Documentation, Release 9.0.1

Promo websites

Develop and manage landing pages or one-pagers easily by setting up HTML into a page template and dragging and
dropping required page widgets quickly.

Web applications

SiteSupra offers a powerful development framework and an array of internal managers that will allow you developing
even very sophisticated web applications easily.

1.1.2 What will be my benefits if I will use SiteSupra?

Beautiful CMS

SiteSupra will add a great value to your website by making website editors fall in love with the CMS. Intuitive, elegant,
beautifully-designed, it will allow your clients doing sophisticated website maintenance tasks easily thanks to Word-

2 Chapter 1. About SiteSupra:

SiteSupra Documentation, Release 9.0.1

like visual interface that covers not only text editing, but website structure, page widget functionality and back-office
applications management.

Industry-standard development approach

There’s no learning curve developing with SiteSupra if you are familiar with Symfony and Doctrine components.
SiteSupra goal is to allow you developing advanced application using well-known PHP components instantly.

Reusable drag-and-drop page widgets

Code a page block once and drag-and-drop it anywhere on the site and reuse later in other websites. SiteSupra ships
with expanding selection of widgets to allow you creating and managing website handily.

1.1. Why Another CMS 3

SiteSupra Documentation, Release 9.0.1

Rich CMS and back-office features

Enjoy advanced CMS features as page versions, scheduled publish and undo history all packed in a beautiful UI
accessible without any learning by regular business users. In case of an enterprise environment set up access rights to
internal applications or website pages and maintain role-based approval workflow.

Extensive modification capacity

Implement your own logic where needed through custom routes and controllers. SiteSupra has no limitations whether
you decide to build a responsive themes or not - it’s only a matter of how you code HTML.

4 Chapter 1. About SiteSupra:

SiteSupra Documentation, Release 9.0.1

1.1.3 What else will I get?

Customisation

We will be glad to help you developing custom SiteSupra extensions, blocks and modules to enhance your website
and bring it to your requirements in the most effective way.

Integration

Shall you require help developing SiteSupra-based website or web application to your unique requirements we will be
happy to assist through all development cycle starting with front-end development to SiteSupra blocks and modules.

Support

We offer help and assistance for your SiteSupra development tasks as well for system installation and maintenance.

1.2 SiteSupra at a Glance

1.2. SiteSupra at a Glance 5

SiteSupra Documentation, Release 9.0.1

6 Chapter 1. About SiteSupra:

CHAPTER 2

Installation:

2.1 Software Requirements

2.1.1 Web Server

SiteSupra can run under any web server that supports PHP. We prefer Apache or nginx. Although, SiteSupra is not
fully tested on Windows platform yet. However, from technical perspective we see no reasons why it may not run well
on a WAMP-powered server.

Additional Modules

As many other CMS and frameworks SiteSupra rewrites URLs to hide reference to index.php file and
make URLs human readable. To enable URL rewriting Apache requires mod_rewrite and nginx requires
ngx_http_rewrite_module.

PHP

PHP version 5.4 or higher is required.

2.1.2 Database

Communications with the database layer is handled by Doctrine ORM. However, only MySQL database server is
supported at the moment. Install MySQL version 5.1 or later.

2.2 Installing SiteSupra

SiteSupra is based on Symfony components and manages dependencies with composer. The installation process is
pretty straightforward. However, you may consider checking Software Requirements first.

For first time users we would recommend to start with cloning SiteSupra Demo site. If you would like to contribute
feel free to clone SiteSupra core.

7

SiteSupra Documentation, Release 9.0.1

2.3 Installing and Configuring SiteSupra Demo Site

2.3.1 Cloning SiteSupra Demo Site

SiteSupra source code is hosted at github. Clone or checkout SiteSupra into your work folder.

$ git clone https://github.com/sitesupra/sitesupra-demo.git sitesupra

2.3.2 Configuring SiteSupra Demo Site

To configure SiteSupra on your computer follow the next steps :

1. Run composer update to update dependencies;

2. Create an empty database;

3. Copy supra/config.yml.example to supra/config.yml and configure database connection;

4. Create tables by running php supra/cli.php doctrine:schema:create

5. Setup assets php supra/cli.php assets:publish;

6. Load fixtures php supra/cli.php sample:fixtures:load storage/fixtures;

That’s all! Now configure web server of your choice (see chapter Configuring Web Server below) and enjoy SiteSupra.

2.4 Installing and Configuring SiteSupra Core

If you would like to contribute to SiteSupra project consider to checkout SiteSupra core. Please note SiteSupra core
doesn’t contain any web site or blocks. You may need to add and configure them by yourself.

2.4.1 Cloning SiteSupra Core

SiteSupra source code is hosted at github. Clone or checkout SiteSupra into your work folder.

$ git clone https://github.com/sitesupra/sitesupra.git sitesupra

2.4.2 Configuring SiteSupra

To configure SiteSupra on your computer follow the next steps :

1. Run composer update to update dependencies;

2. Set up web server permissions for storage folder (you can stick to plain old chmod 777 or use ACL approach
as Symfony does);

3. Create an empty database;

4. Copy supra/config.yml.example to supra/config.yml and provide database credentials;

5. Create tables by running php supra/cli.php doctrine:schema:create;

6. Load initial fixtures by running supra/cli.php supra:bootstrap;

7. Publish assets with supra/cli.php assets:publish.

All done! Now just point your web server of choice to web directory in SiteSupra project’s root.

8 Chapter 2. Installation:

https://github.com/SiteSupra/sitesupra
https://github.com/SiteSupra/sitesupra
http://symfony.com/doc/current/book/installation.html#checking-symfony-application-configuration-and-setup

SiteSupra Documentation, Release 9.0.1

2.5 Configuring Web Server

2.5.1 Apache

Point DocumentRoot to the web directory in SiteSupra project’s root. Allow to follow symlinks and configure
rewrite rules as listed below.

Options +FollowSymlinks

RewriteEngine On

RewriteCond %{DOCUMENT_ROOT}%{REQUEST_FILENAME} -f

RewriteRule ^ - [L,NS]
RewriteRule ^.*$ /index.php$0 [L,NS]

Rewrite rules for .htaccess are provided in .htaccess file that comes along with SiteSupra source code.

2.5.2 nginx

Point root to the web directory in SiteSupra project’s root. Configure rewrite rules as shown below:

location / {
try_files $uri $uri/ /index.php;

}

2.5. Configuring Web Server 9

SiteSupra Documentation, Release 9.0.1

10 Chapter 2. Installation:

CHAPTER 3

Quick Start:

SiteSupra is open source PHP framework and extremely powerful web site builder bundled with user-friendly CMS.

3.1 Where to Start

• SiteSupra at a glance

• Installation

• Building your first SiteSupra web site

Tip: no tips yet.

3.2 SiteSupra Concepts

Please document what is an application (in controller context)

11

SiteSupra Documentation, Release 9.0.1

12 Chapter 3. Quick Start:

CHAPTER 4

Developer’s Guide:

4.1 Standard Packages

4.1.1 Core

Not much of a package but SiteSupra itself. It contains core classes and definitions of SiteSupra framework.

4.1.2 Cms

SiteSupra CMS by itself. This package contains controllers, routing, entities and frontend assets that are used through-
out CMS backend.

4.1.3 CmsAuthentication

SiteSupra authentication layer is separated in CmsAuthentication bundle. It sets up ‘‘SecurityContext11 and handles
backend user authentication. It is not suitable for front-end user authentication.

4.1.4 DebugBar

Integrates PHP DebugBar into SiteSupra allowing you to monitor requests, their time lines, SQL queries, events, and
much more. This package is active only when SiteSupra runs in debug mode.

4.1.5 Framework

This package combines and integrates everything together. It sets up Doctrine, EntityAudit, Twig, and all other
components required to run SiteSupra. It also registers most of the commands that you can access from Command
Line Interface.

4.2 HTTP Kernel and Bootstrap Process

13

http://phpdebugbar.com/

SiteSupra Documentation, Release 9.0.1

Note: SiteSupra does not use HttpKernel. We had eight versions of SiteSupra before moving to Symfony. Unfortu-
antely, no all of the Symfony concepts do suit our needs well. Our implementation is still a bit incomplete, especially
RequestStack and forwarding, so expect refactoring soon.

SiteSupra uses plain HttpFoundation component (see documentation of HttpFoundation and HTTP requests in
symfony for more information).

SiteSupra mimics Symfony behaviour as close as possible - a Request object is created, every controller returns
Response (read more on controllers here). Basically, request processing happens in the following order:

• Web server hits entry point webroot/index.php;

• SiteSupra builds container, buildContainer() is called;

• SiteSupra boots, boot() is called. Two events are fired at that moment - Supra::EVENT_BOOT_START
and Supra::EVENT_BOOT_END. Method boot() is called for every registered package, allowing early
initialization;

• Request handling starts by calling handleRequest($request). This method loads
Supra\Core\Kernel\HttpKernel and calls handle(). Request handling by HttpKernel traverses
through stages below:

1. KernelEvent::REQUEST is thrown. Request processing stops when there is at least one event config-
ured for response to RequestResponseEvent. Request object is returned;

2. Kernel tries to resolve controller and action by checking _controller and _action parameters of
request AttributeBag; if found, controller is instantiated, action is called and HttpKernel expects
Controller to return a Response. This is used when forwarding requests or instantiating requests
without a route;

3. If controller is not resolved yet kernel loads routing and tries to find current route. AttributeBag
is overwritten by one created from route configuration and controller is actually executed.
KernelEvent::CONTROLLER_START and KernelEvent::CONTROLLER_END events are fired,
and any listener can override response during KernelEvent::CONTROLLER_END event. If any excep-
tion (generic or ResourceNotFoundException) is thrown request processing moves to exceptions
processing (see stage 5 below);

4. Kernel fires final KernelEvent::RESPONSE event and returns resulting Response object. Exception
is thrown when the object is not an instance of Response;

5. If any exception is caught during request processing, then the exception is processed in the following way:

1. Kernel fires KernelEvent::EXCEPTION event (again, if any listener provides Response inside this
exception event, then the response is returned);

2. If exception is instance of ResourceNotFoundException, a special event is fired -
KernelEvent::ERROR404, which allows, for example, on-the-fly compilation of assets. Fi-
nally, if no response is available after the event is processed, the exception is re-thrown (in de-
bug mode) or exception404Action of default exception controller (stored in container under
exception.controller key) is called;

3. If there’s still and exception and no response, an exception is re-thrown (in debug mode)
or exception500Action of default exception controller (stored in container under
exception.controller key) is called.

• Resulting response is sent to the browser (by calling send() method)). Any unhandled exception is caught by
Debug component;

• SiteSupra shuts down firing Supra::EVENT_SHUTDOWN_START and Supra::EVENT_SHUTDOWN_END
events and calls shutdown() method of all registered packages, thus allowing some late cleanup.

14 Chapter 4. Developer’s Guide:

https://github.com/symfony/HttpKernel
https://github.com/symfony/HttpFoundation
http://symfony.com/doc/current/book/http_fundamentals.html#requests-and-responses-in-symfony
http://symfony.com/doc/current/book/http_fundamentals.html#requests-and-responses-in-symfony
http://symfony.com/doc/current/components/debug/introduction.html

SiteSupra Documentation, Release 9.0.1

As you can see, this process is pretty simple and transparent. Last thing to note must be a SupraJsonResponse
class that is used throughout CMS backend for passing messages, warnings, and errors to frontend in a common way.
See the class source code to learn more on messaging process.

4.3 Dependency Injection

4.3.1 Core Concepts

SiteSupra Dependency Injection layer or DI in short is based on Pimple. If you’re curious about what DI is you can
read the following Wiki articles:

• Inversion of control;

• Dependency injection.

We also recommend read Symfony’s documentation about basic DI principles.

SiteSupra main container class is Supra\Core\DependencyInjection\Container. It extends Pimple’s
Container, implements SiteSupra’s Supra\Core\DependencyInjection\ContainerInterface, imple-
ments some hard-coded methods (remember, we’re a CMS, and not a full-stack framework, some items like Doctrine
or Cache are always present), and provides parameters handling.

Note: It’s almost certain that we will drop hard-coded getters later and build container definition on-the-fly in the
same way Symfony does.

Everything is simple, right? Last but not least to note would be that any object implementing
Supra\Core\DependencyInjection\Container\ContainerAware will be provided with
Container on instantiation (calling setContainer).

4.3.2 Container Building Process

Note: The code will be refactored soon.

SiteSupra core class (Supra\Core\Supra, extending Supra\Core\DependencyInjection\ContainerBuilder)
builds and returns Container object during call to buildContainer. This is done in the following steps:

• Pre-setting some basic variables and objects (like directories, HttpFoundation objects, Command Line Interface,
and so on);

• Injecting packages (allowing to expose their basic configuration);

• Building configuration (there the configuration is being validated, default values set, container parameters are
substituted, and so on);

• Finishing configuration when packages can override or extend config values of other packages;

• Firing Supra::EVENT_CONTAINER_BUILD_COMPLETE event.

4.3.3 Package Integration and Two-pass Container Building

First of all, a package needs to be registered. This is done by overriding registerPackages in
SupraApplication class (located in supra/SupraApplication.php). This method simply returns array

4.3. Dependency Injection 15

http://pimple.sensiolabs.org/
http://en.wikipedia.org/wiki/Inversion_of_control
http://en.wikipedia.org/wiki/Dependency_injection
http://symfony.com/doc/current/book/service_container.html
https://github.com/silexphp/Pimple/blob/master/src/Pimple/Container.php
https://github.com/symfony/HttpFoundation

SiteSupra Documentation, Release 9.0.1

of package instances, like in the example below:

1 <?php
2

3 use Supra\Core\Supra;
4

5 class SupraApplication extends Supra
6 {
7 protected function registerPackages()
8 {
9 return array(

10 new \Supra\Package\Framework\SupraPackageFramework(),
11 new \Supra\Package\Cms\SupraPackageCms(),
12 new \Supra\Package\CmsAuthentication\SupraPackageCmsAuthentication(),
13 new \Supra\Package\DebugBar\SupraPackageDebugBar(),
14

15 new \Sample\SamplePackage()
16);
17 }
18 }

Each package must extend Supra\Core\Package\AbstractSupraPackage. You can override any of the
following methods to alter SiteSupra behavior:

• boot() method will be called during SiteSupra boot, see HTTP Kernel and Bootstrap Process;

• inject(ContainerInterface $container) method will be called during Container building in
package injection phase (see above);

• finish(ContainerInterface $container)method will be called finishing Container build after the
configuration is processed;

• shutdown() method will be called during SiteSupra shutdown, see HTTP Kernel and Bootstrap Process.

4.3.4 Package Configuration

As mentioned above package configuration may occur in two phases - injection phase and finishing phase. Let’s look
at both of them starting from inject():

1 <?php
2

3 public function inject(ContainerInterface $container)
4 {
5 $this->loadConfiguration($container);
6

7 $container->getConsole()->add(new DoFooBarCommand());
8

9 $container[$this->name.'.some_service_name'] = function (ContainerInterface $container) {
10 return new SomeService();
11 };
12

13 if ($container->getParameter('debug')) {
14 //prepare some extended logging, for example
15 }
16 }

The most important call would be $this->loadConfiguration() (line 5). This method loads configuration
file (by default it is Resources/config/config.yml). To load your own configuration pass the file name to
the method as a second parameter .

16 Chapter 4. Developer’s Guide:

SiteSupra Documentation, Release 9.0.1

This call parses config file, processes the configuration using package configuration definition (more on that on Sym-
fony configuration component article), and stores the values for further processing.

Later you can access already defined services (see line line 7, which though is not a very good approach since it
instantiates the service), add your own service definitions (lines 9-11), and access container parameters (line
13).

Each package has it’s own configuration definition. Concrete configuration object is created during call to
getConfiguration() method. By default, if there is a package named SupraPackageFooBar
in namespace Com\Package\FooBar, then the method will search for configuration definition
SupraPackageFooBarConfiguration in namespace Com\Package\FooBar\Configuration.
Of course, you can always override you package’s method getConfiguration() and implement your own logic.

The configuration class should extend Supra\Core\Configuration\AbstractPackageConfiguration
and implement ConfigurationInterface. This forces you to implement function
getConfigTreeBuilder(), returning instance of Symfony\Component\Config\Definition\Builder\TreeBuilder.
If you’re curious about what is a TreeBuilder and how exactly the configuration is being defined, please read
Defining a Hierarchy of Configuration Values Using the TreeBuilder on official Symfony documentation web site.
Let’s take configuration of SupraPackageFrameworkConfiguration as an example:

1 <?php
2

3 class SupraPackageFrameworkConfiguration extends AbstractPackageConfiguration implements ConfigurationInterface
4 {
5 /**
6 * Generates the configuration tree builder.
7 *
8 * @return \Symfony\Component\Config\Definition\Builder\TreeBuilder The tree builder
9 */

10 public function getConfigTreeBuilder()
11 {
12 $treeBuilder = new TreeBuilder();
13

14 $treeBuilder->root('framework')
15 ->children()
16 ->append($this->getAuditDefinition())
17 //some other definitions are skipped for illustrative purposes
18 ->append($this->getServicesDefinition())
19 ->end();
20

21 return $treeBuilder;
22 }
23

24 public function getAuditDefinition()
25 {
26 $definition = new ArrayNodeDefinition('doctrine_audit');
27

28 $definition->children()
29 ->arrayNode('entities')
30 ->prototype('scalar')->end()
31 ->end()
32 ->arrayNode('ignore_columns')
33 ->prototype('scalar')->end()
34 ->end()
35 ->end();
36

37 return $definition;
38 }
39 }

4.3. Dependency Injection 17

http://symfony.com/doc/current/components/config/definition.html
http://symfony.com/doc/current/components/config/definition.html
http://symfony.com/doc/current/components/config/definition.html#defining-a-hierarchy-of-configuration-values-using-the-treebuilder

SiteSupra Documentation, Release 9.0.1

Root node (line 14) must match your package name. The rest of configuration definition is standard for Symfony-
based applications (lines 24-38), except for call of ->append($this->getServicesDefinition()),
which is inherited from AbstractPackageConfiguration and enables parsing of services section of your
configuration file.

Package configuration files are simple yml files as shown below:

1 services:
2 supra.framework.session_storage_native:
3 class: \Symfony\Component\HttpFoundation\Session\Storage\NativeSessionStorage
4 parameters: [[], "@supra.framework.session_handler_doctrine"]
5 supra.framework.session_handler_doctrine:
6 class: \Supra\Package\Framework\Session\DoctrineSessionHandler
7 #some config parts are skipped for illustrative purposes
8 doctrine:
9 #some config parts are skipped for illustrative purposes

10 credentials:
11 hostname: localhost
12 username: root
13 password: ~
14 charset: utf8
15 database: supra9
16 connections:
17 default:
18 host: %framework.doctrine.credentials.hostname%
19 user: %framework.doctrine.credentials.username%
20 password: %framework.doctrine.credentials.password%
21 dbname: %framework.doctrine.credentials.database%
22 charset: %framework.doctrine.credentials.charset%
23 driver: mysql
24 event_manager: public
25 entity_managers:
26 public:
27 connection: default
28 event_manager: public
29 default_entity_manager: public
30 default_connection: default
31 doctrine_audit:
32 entities: []
33 ignore_columns:
34 - created_at
35 - updated_at
36 - lock

Lines 1-6 define services. Key is service ID, ‘class’ defines class name and ‘parameters’ section enables setter
injection (note that you can inject other services referenced with ‘@’ as shown in line 4). Setter injection is not yet
supported.

First level keys will become container parameters prefixed with package name. In the example above, con-
tainer parameters are ‘framework.doctrine’ and ‘framework.doctrine_audit’, and you can call something like
$container->getParameter(’framework.doctrine_audit’)[’entities’] later in your code.

You may also reference any parameter using percent notation (%parameter.name%). In the example above, line
18 references value from line 11, possibly overridden by another package or main SiteSupra’s config.yml.

After calling inject() method of all packages, container builder merges configuration values (also replacing /
referencing parameters), and starts calling finish() method of all packages, in load order. You finish() method
can look like so:

18 Chapter 4. Developer’s Guide:

SiteSupra Documentation, Release 9.0.1

1 <?php
2

3 public function finish(ContainerInterface $container)
4 {
5 //extend some other package service
6 $container->extend('some.other.service', function ($originalService, $container) {
7 $originalService->callSomeMethod();
8

9 return new SomeWrapper($originalService);
10 };
11

12 $doctrineConfig = $container->getParameter('framework.doctrine');
13

14 //processed configuration from example above. with merged parameters and optionally overridden by main config.yml
15 $connectionDetails = $doctrineConfig['connections']['default'];
16 }

So, summing up:

1. You define your configuration in inject() method;

2. Container processes your configuration and merges it;

3. You retrieve processed values from container in finish() method and define your services;

4. Resulting container is available throughout SiteSupra.

4.3.5 Main SiteSupra Configuration File (config.yml)

Default SiteSupra configuration file supra/config.yml.example:

1 cms:
2 active_theme: default
3 framework:
4 doctrine:
5 credentials:
6 hostname: localhost
7 username: root
8 password: ~
9 charset: utf8

10 database: supra9
11 cms_authentication:
12 users:
13 shared_connection: null
14 user_providers:
15 doctrine:
16 supra.authentication.user_provider.public:
17 em: public
18 entity: CmsAuthentication:User
19 provider_chain: [doctrine.entity_managers.public]

Top-level keys correspond to package names, corresponding values are deep-merged with default values resolved in
injection phase. Here you can see how default ‘doctrine.configuration’ values are merged with defaults from Supra-
PackageFramework; any part of configuration can be overridden.

4.3. Dependency Injection 19

SiteSupra Documentation, Release 9.0.1

4.3.6 Container Parameter Handling, Parameter Substitution

Parameters are SiteSupra-specific extension to Pimple. Basically they represent simple key-value storage (with all
the getters and setters. Refer to Supra\Core\DependencyInjection\Container for more information.
However, some of the methods are worth to be noted separately:

• replaceParameters searches array of data and replaces all parameters enclosed in percent signs (like
%foo.bar%) to their respective values;

• replaceParametersScalar replaces all parameters enclosed in percent signs (like %foo.bar%) to their
respective values in a scalar variable (string);

• getParameter threads dots inside parameter name as internal array keys (thus allow-
ing you to call $container->getParameter(’foo.bar.buz.example’) instead of
$container->getParameter(’foo.bar’)[’buz’][’example’]).

4.3.7 Standard Container Parameters

Standard container parameters that can help you in development process are listed below.

Directories

There is a number of container parameters reflecting SiteSupra directory structure:

• directories.project_root for project root folder (with composer.json and other core files);

• directories.supra_root for directory where Supra.php and config.yml reside;

• directories.storage for storage folder;

• directories.cache for cache folder (inside storage root);

• directories.web for webroot (this is where SiteSupra entry point, index.php, is);

• directories.public for asset root, Resources\public folders of every package are symlinked there.

Environments and Debugging

Some parameters are affected by current development settings:

• environment shows current environment - currently on of cli, prod, or dev;

• debug shows current debug state - either true or false.

4.3.8 Service Definition

Adding ->addServiceDefinition() to package configuration will allow that package to define services. Ser-
vice definition has to reside under section services in configuration file.

A simple service definition contains service id and class name:

1 services:
2 locale.manager:
3 class: \Supra\Core\Locale\LocaleManager

you can provide constructor arguments as an array:

20 Chapter 4. Developer’s Guide:

SiteSupra Documentation, Release 9.0.1

1 services:
2 supra.doctrine.event_subscriber.table_name_prefixer:
3 class: \Supra\Core\Doctrine\Subscriber\TableNamePrefixer
4 parameters: ['su_', '']

or even use container parameters as arguments:

1 services:
2 supra.framework.session_storage_native:
3 class: \Symfony\Component\HttpFoundation\Session\Storage\NativeSessionStorage
4 parameters: [[], "@supra.framework.session_handler_doctrine"]

Unfortunately, caller injections are not possible with SiteSupra yet. But still you can use common Pimple’s approach
during inject() or finish():

1 <?php
2

3 $container['some.service'] = function ($container) use ($dependency1, $dependency2) {
4 $service = new SomeService($dependency1);
5

6 $service->setDependency2($dependency2);
7

8 $service->intialize();
9

10 return $service;
11 };

4.4 Command Line Interface

4.4.1 General Concepts

SiteSupra uses Symfony console component for console operations. Boris is used for REPL shell.

The main console executable is supra/cli.php. Running it without parameters (like php supra/cli.php)
will give you a list of all available commands.

By default CLI loads with cli environment and debugging enabled.

CLI Events

You can use events in your console application; you can use Symfony\Component\Console\Event\ConsoleEvent
or Supra\Core\Event\ConsoleEvent (providing methods getData/setData)
for such cases. Currently, there’s only one CLI-only event in SiteSupra,
Supra\Package\Framework\Event\FrameworkConsoleEvent::ASSETS_PUBLISH, provided
by SupraPackageFramework, that is fired running supra/cli.php assets:publish. This event
can be used to copy some non-standard assets to your webroot (to simplify things, you can implement
Supra\Core\Event\ConsoleEventListenerInterface for your listener and use webRoot and
webRootPublic keys of $assetsPublishEvent->getData() to determine copy locations).

4.4.2 Core Commands

SiteSupra does not provide any built-in commands itself; on a plain installation you have help and list commands,
that are standard for Symfony Console. Only two argumens (--env, or -e, for environment, defaulting to cli, and
--debug, defaulting to true), are present.

4.4. Command Line Interface 21

http://symfony.com/doc/current/components/console/introduction.html
https://github.com/d11wtq/boris

SiteSupra Documentation, Release 9.0.1

4.4.3 Package Commands

SupraPackageCms

This package does not provide any CLI commands.

SupraPackageCmsAuthentication

This package provides the following commands:

• groups:add

• groups:list

• groups:remove

• groups:update

• users:add

• users:list

• users:remove

• users:update

these are self-explanatory and documented inline (try, for example, supra/cli.php help groups:update -
you’ll like it!).

SupraPackageDebugBar

This package does not provide any CLI commands.

SupraPackageFramework

assets:publish

Each package can contain assets (in Resources\public directory). Publishing assets means that this directory
will be symlinked (sorry, no hard copy option yet) into web/public/PACKAGE_NAME. Supra cleans up package
name, so assets from SupraPackageCms will we symlinked into web/public/cms, enabling you to access them
from the frontend.

cache:clear

Clears SiteSupra cache. Cleans up all cache entries, if no argument is provided, or a particular segment. For more
information SiteSupra cache see Cache chapter of this manual.

cache:list

Shows info about SiteSupra cache and segments:

22 Chapter 4. Developer’s Guide:

SiteSupra Documentation, Release 9.0.1

+----------------+-------+-------+
| Directory | Size | Files |
+----------------+-------+-------+
assets_404	0.13M	14
cms_assets	1.80M	2
combo	1.06M	27
config	0.04M	8
doctrine	0.04M	5
frontend_cache	0.02M	1
twig	0.02M	7
+----------------+-------+-------+

container:dump

Dumps information about container parameters and services:

Container parameters:
+---+---+
| Parameter | Value |
+---+---+
directories.supra_root	/home/developer/www/composer-test/supra
directories.project_root	/home/developer/www/composer-test
directories.storage	/home/developer/www/composer-test/storage
directories.cache	/home/developer/www/composer-test/storage/cache
directories.web	/home/developer/www/composer-test/web
directories.public	/home/developer/www/composer-test/web/public
environment	cli
debug	TRUE
cms.media_library_known_file_extensions	array
results truncated...	
+---+---+	
Container services:	
+--+	
ID	
+--+	
application	
config.universal_loader	
routing.router	
kernel.kernel	
exception.controller	
http.request	
cache.driver	
cache.cache	
results truncated...	
+--+

container:packages:list

Lists enabled Packages (showing both package name and class).

Doctrine-specific commands

The following commands are directly mapped the their Doctrine counterparts:

• doctrine:cache-clear:metadata

4.4. Command Line Interface 23

http://doctrine-orm.readthedocs.org/en/latest/reference/tools.html

SiteSupra Documentation, Release 9.0.1

• doctrine:cache-clear:query

• doctrine:cache-clear:result

• doctrine:convert-encodings

• doctrine:generate:proxies

• doctrine:schema:create

• doctrine:schema:drop

• doctrine:schema:update

Please refer to Doctrine documentation should you need help on that.

framework:routing:list

Displays all registered routes, patterns, resulting controller, and whether the route is exported to fronted:

Defined routes:
+--------------------------------------+---+------------------------------------+----------+
| Name | Pattern | Controller | Frontend |
+--------------------------------------+---+------------------------------------+----------+
framework_combo	/_framework_internal/combo/{paths}	Framework:Combo:combo	No
framework_routes	/_framework_internal/routes	Framework:Routing:export	No
cms_dashboard	/backend	Cms:Dashboard:index	Yes
cms_dashboard_applications_list	/backend/applications-list	Cms:Dashboard:applicationsList	Yes
results truncated...			
+--------------------------------------+---+------------------------------------+----------+

supra:bootstrap

Creates default user (username admin, password admin) and loads some initial templates so you can access backend
and create new pages.

supra:shell

Launches REPL shell, with pre-set $container and $application variables. You can play around with some
SiteSupra code without having debug controllers:

[1] supra> $container->getRouter()->generate('cms_dashboard');
// '/backend'
[2] supra>

supra:nested_set:check

Warning: Warning! There is a risk of losing your data. Please don’t forget to backup your database prior to
running the command.

SiteSupra uses custom NestedSet implementation. It’s quite stable and almost bulletproof, although may need in repair
from time to time.

24 Chapter 4. Developer’s Guide:

http://doctrine-orm.readthedocs.org/en/latest/reference/tools.html

SiteSupra Documentation, Release 9.0.1

4.4.4 Writing your own Command

See Writing Your Own Command for a complete reference.

4.5 Database (Doctrine 2) and EntityAudit

SiteSupra uses Doctrine ORM for database operations (a nice introduction to Doctrine is available at Symfony docs).

4.5.1 Doctrine Configuration

In most cases you do not need to configure anything but set up database credentials in supra/config.yml. Com-
monly, you have to override framework.doctrine parameter only:

1 framework:
2 doctrine:
3 credentials:
4 hostname: localhost
5 username: root
6 password: ~
7 charset: utf8
8 database: supra9

If you need auditing for your project issues, you will have to add them to framework.doctrine_audit.entities, along
with default values, like shown below:

1 framework:
2 doctrine_audit:
3 entities:
4 Supra\Package\Cms\Entity\Abstraction\Localization
5 Supra\Package\Cms\Entity\Abstraction\AbstractPage
6 Supra\Package\Cms\Entity\Page
7 Supra\Package\Cms\Entity\GroupPage
8 Supra\Package\Cms\Entity\Template
9 Supra\Package\Cms\Entity\PageLocalization

10 Supra\Package\Cms\Entity\PageLocalizationPath
11 Supra\Package\Cms\Entity\TemplateLocalization
12 Supra\Package\Cms\Entity\Abstraction\Block
13 Supra\Package\Cms\Entity\Abstraction\PlaceHolder
14 Supra\Package\Cms\Entity\PagePlaceHolder
15 Supra\Package\Cms\Entity\TemplatePlaceHolder
16 Supra\Package\Cms\Entity\PageBlock
17 Supra\Package\Cms\Entity\TemplateBlock
18 Supra\Package\Cms\Entity\BlockProperty
19 Supra\Package\Cms\Entity\BlockPropertyMetadata
20 Supra\Package\Cms\Entity\ReferencedElement\LinkReferencedElement
21 Supra\Package\Cms\Entity\ReferencedElement\ImageReferencedElement
22 Supra\Package\Cms\Entity\ReferencedElement\ReferencedElementAbstract
23 Package\MyCustomPackage\Entity\CustomAuditedEntity

However, this will override previous values and possibly mess other packages. Thus, a better approach would we
adding them during package injection phase:

1 <?php
2

3 public function inject(ContainerInterface $container)

4.5. Database (Doctrine 2) and EntityAudit 25

http://www.doctrine-project.org/
http://symfony.com/doc/current/book/doctrine.html

SiteSupra Documentation, Release 9.0.1

4 {
5 $frameworkConfiguration = $container->getApplication()->getConfigurationSection('framework');
6

7 //add audited entities
8 $frameworkConfiguration['doctrine_audit']['entities'] = array_merge(
9 $frameworkConfiguration['doctrine_audit']['entities'],

10 array(
11 'Package\MyCustomPackage\Entity\CustomAuditedEntity',
12)
13);
14

15 $container->getApplication()->setConfigurationSection('framework', $frameworkConfiguration);
16 }

Basically, you can override any package configuration by using getConfigurationSection() and
setConfigurationSection().

4.5.2 CLI Commands

Please refer to SiteSupra Command Line Interface for more information. All Doctrine commands known by Symfony
are available via SiteSupra CLI.

4.5.3 Standard event listeners

By default SupraPackageFramework defines and initializes Doctrine using it’s own config.yml:

1 doctrine:
2 event_managers:
3 public:
4 subscribers:
5 - supra.doctrine.event_subscriber.table_name_prefixer
6 - supra.doctrine.event_subscriber.detached_discriminator_handler
7 - supra.doctrine.event_subscriber.nested_set_listener
8 - supra.doctrine.event_subscriber.timestampable

subscribers array references the following classes, also defined in config.yml, services section:

1 services:
2 supra.doctrine.event_subscriber.table_name_prefixer:
3 class: \Supra\Core\Doctrine\Subscriber\TableNamePrefixer
4 parameters: ['su_', '']
5 supra.doctrine.event_subscriber.detached_discriminator_handler:
6 class: \Supra\Core\Doctrine\Subscriber\DetachedDiscriminatorHandler
7 supra.doctrine.event_subscriber.timestampable:
8 class: \Supra\Package\Framework\Doctrine\Subscriber\TimestampableListener
9 supra.doctrine.event_subscriber.nested_set_listener:

10 class: \Supra\Core\NestedSet\Listener\NestedSetListener

They serve for the following purposes:

• TableNamePrefixer adds prefixes to SiteSupra database tables (currently not-changeable, default su_);

• DetachedDiscriminatorHandler is internal SiteSupra feature. Quite probably we’ll tune it up and
document later;

26 Chapter 4. Developer’s Guide:

SiteSupra Documentation, Release 9.0.1

• TimestampableListener listens to changes in entities implementing
Supra\Package\Cms\Entity\Abstraction\TimestampableInterface, calls
setCreationTime() and setModificationTime if needed;

• NestedSetListener handles changes in SiteSupra’s NestedSet implementation.

If some other package must add other event subscribers, this can be done by overriding SupraPackageFramework
configuration like it is done in SupraPackageCms:

1 <?php
2

3 public function inject(ContainerInterface $container)
4 {
5 //setting up doctrine
6 $frameworkConfiguration = $container->getApplication()->getConfigurationSection('framework');
7

8 $frameworkConfiguration['doctrine']['event_managers']['public'] = array_merge_recursive(
9 $frameworkConfiguration['doctrine']['event_managers']['public'],

10 array(
11 'subscribers' => array(
12 'supra.cms.file_storage.event_subscriber.file_path_change_listener',
13 'supra.cms.pages.event_subscriber.page_path_generator',
14 'supra.cms.pages.event_subscriber.image_size_creator_listener',
15)
16)
17);
18

19 $container->getApplication()->setConfigurationSection('framework', $frameworkConfiguration);
20 }

You can freely alter any configurations during package injection phase (since actual entity managers and subscribers
are set up only in finishing phase).

4.5.4 Internal Entities and SupraId

Doctrine, by itself, is a very sensitive system. For example, it does not like when you are trying to persist entity that
already has id or restore entities with pre-set foreign keys. However, SiteSupra’s versioning, based on EntityAudit,
does exactly that! Therefore, we are using:

• A custom type, called supraId20 (use @Column(type="supraId20")). That’s currently just a 20 char-
acters length string;

• A custom base entity Supra\Package\Cms\Entity\Abstraction\Entity, which is a
@MappedSuperclass, and provides base methods like regenerateId, __clone etc.

SiteSupra Id contains twenty symbols and looks like “018dusx9903wosockckg”, where:

• First 9 symbols are reserved for timestamp converted to base36. Tto be honest, we do not use standard unix
timestamps. Our base date is 16 Dec 2011, 11:33:05. That’s the day when supraId was introduced;

• Next two symbols are reserved for internal counter of entities persisted in current session;

• Trailing 9 symbols are just a randomly generates suffix.

Note: This is expected to be refactored to @GeneratedValue(strategy=”CUSTOM”) and @CustomIdGenera-
tor(class=”...”) soon

4.5. Database (Doctrine 2) and EntityAudit 27

SiteSupra Documentation, Release 9.0.1

4.5.5 EntityAudit and Versioning

SiteSupra’s versioning is almost completely based on EntityAudit library. For more inforamtion refer to respective
documentation. We do not override anything there, so this should be enough if you need to implement auditing of your
project entities.

4.6 Routing

4.6.1 Loading Routes

SiteSupra routing is heavily based on Symfony’s routing component and uses very similar syntax. However, there are
some minor differences. For example, you have to load all your routing files manually in your package’s inject()
method:

1 <?php
2

3 $container->getRouter()->loadConfiguration(
4 $container->getApplication()->locateConfigFile($this, 'routes.yml')
5);

Function locateConfigFile searches routes.yml in your package’s Resources\config directory.

4.6.2 Common Example

Let’s take a look at some routing definition examples. The most simple would be SupraPackageFramework main
routing file:

1 configuration:
2 prefix: ~
3 routes:
4 framework_combo:
5 pattern: /_framework_internal/combo/{paths}
6 controller: Framework:Combo:combo
7 requirements:
8 paths: .+
9 defaults:

10 paths: ~
11 framework_routes:
12 pattern: /_framework_internal/routes
13 controller: Framework:Routing:export

configuration section at line 1 defines global prefix and defaults (default parameter values) keys.
prefix must be explicitly defined even with default ~ value.

routes section, starting from line 3, defines actual routes. Each route may contain the following fields:

• pattern defines actual URI that will trigger the route;

• controller specifies the controller (in the example above, Framework:Combo:combo resolves into
SupraPackageFramework→ ComboController→ comboAction (just like Symfony does!);

• filters defines Symfony route filters;

• requirements here you can specify per-parameter regex requirements;

• defaults provides default parameter values;

28 Chapter 4. Developer’s Guide:

https://github.com/simplethings/EntityAudit
https://github.com/simplethings/EntityAudit

SiteSupra Documentation, Release 9.0.1

• options at the moment supports frontend key only.

where only pattern and controller are required.

Tip: Due to the fact SiteSupra’s routing is based on Symfony Routing component, everything written in Symfony
documentation applies to SiteSupra as well - we did not reinvent the wheel here.

4.6.3 Container Parameters and JavaScript

Let’s see a bit more complicated example from SupraPackageCms:

1 configuration:
2 prefix: ~
3 routes:
4 cms_dashboard:
5 pattern: %cms.prefix%
6 controller: Cms:Dashboard:index
7 options:
8 frontend: true

First of all, you can use container parameters (in %container.parameter.name% form) in your route
pattern. Secondly, you can provide frontend: true option and use in Javascript like this:

1 Supra.Url.generate('cms_dashboard');

4.7 Controllers

4.7.1 What are Controllers?

SiteSupra, following Symfony, is a request-response framework. It boots up in a request context, applies business
logic to the data provided, creates a response object, and returns result to the client. In general, requests are mapped
through the routing engine to Controllers, which are PHP classes implementing the logic behind SiteSupra.

Each Package has it’s own set of controllers and routing rules. There is no limit on number of controllers and actions
your web application may have. You may build and group your logic in the way you like.

4.7.2 Controller, Naming, and Routes

Controllers are package - specific classes, extending Supra\Core\Controller\Controller. They must re-
side in Controller namespace (like Supra\Package\Framework\Controller). Each controller method
should accept Request and return a Response (more on these classes in Symfony HttpFoundation documentation).

SiteSupra expect Controller suffix in each Controller name (like FooBarController or UserController)
and Action suffix in each action method (like deleteAction or listAction).

Routes use short syntax (Package:Controller:action). For example,
Framework:Routing:export resolves to SupraPackageFramework (namespace
Supra\Package\Framework\Controller), class RoutingController, and method exportAction
(thus, Supra\Package\Framework\Controller\RoutingController::exportAction).

Each action is expected to return a Symfony\Component\HttpFoundation\Response object. Returning
scalar value or not returning any value at all (which is equivalent to return NULL) will cause HttpKernel to
throw an exception.

4.7. Controllers 29

http://symfony.com/doc/current/components/routing/introduction.html
http://symfony.com
https://github.com/symfony/HttpFoundation

SiteSupra Documentation, Release 9.0.1

1 <?php
2

3 public function doStuffAction()
4 {
5 // doing stuff here
6

7 return new Response('<html><head><title>Hello!</title</head><body>Hello!</body></html>');
8 }

Of course, all types of Symfony responses are supported (like JsonResponse, or RedirectResponse). For
example, a redirect to another URL could be called in the following way:

1 <?php
2

3 public function doStuffWithRedirectAction()
4 {
5 // doing stuff here
6

7 return new RedirectResponse('http://example.com/');
8 }

4.7.3 Base Controller Class

SiteSupra provides base class for your controllers, which is Supra\Core\Controller\Controller. First of
all, it is ContainerAware, so you can always access DI Container via $this->container (container instance is set
by Http kernel when controller is instantiated). It’s provided with $package and $application properties, which
are set to current package class name (like Supra\Package\Framework\SupraPackageFramework), and
frontend application name (like cms_authentication).

Other handy methods of Controller class are listed below:

• renderResponse renders twig template and returns a Response object;

• render renders twig template and returns result as a string;

• setApplication overrides current application for ApplicationManager (see SiteSupra Concepts for more
details);

• getUser returns current user or returns null if there’s no security context, or if the security context does not
contain valid token, or if the token does not contain valid user. See Security for more information;

• getPackage returns current package name (without namespace prefix, like Framework);

• checkActionPermission is a security-oriented stub that is not yet ported from legacy SiteSupra code to
Symfony’s ACL.

4.7.4 Exceptions

Controllers do not provide any custom exception handling. Instead, any exception is caught by Http kernel.
Depending on current debug settings either trace is written or a special controller is being called (invoking
exception500Action).

A special case is Symfony\Component\Routing\Exception\ResourceNotFoundException, which
is forwarded to exception404Action of exception controller, thus allowing you to show pretty 404 page in
production mode.

30 Chapter 4. Developer’s Guide:

SiteSupra Documentation, Release 9.0.1

4.8 Page routing

4.9 Cache

SiteSupra does not provide any public caching interfaces. However, it has an internal cache system that you can use
and benefit on.

4.9.1 Cache Class

Cache class (Supra\Core\Cache\Cache, accessible by cache.cache service key or
$container->getCache() method) exposes the following methods:

• fetch($prefix, $key, $default, $timestamp, $ttl, $respectDebug) fetches and
probably stores value in the cache (if current value was not found). The parameters are explained below:

– $prefix and $key parameters are quite self-explanatory;

– $default value can be a scalar or a callable (checked by is_callable), which is being called only on
cache miss;

– $timestamp is a last modification timestamp allowing you to refresh the cache. It’s very handy for
storing and combining assets;

– $ttl is a time to live value;

– $respectDebug turns cache off development environment when set to true. Basically, the cache will
still work, but the values in there will overwritten with every page request.

• store($prefix, $key, $value, $timestamp, $ttl) directly proxies data to storage driver. If
$value is callable, it is invoked;

• delete($prefix, $key) deletes value from driver;

• clear($prefix) deletes all values for particular prefix;

We’ve tried to make the cache as simple as possible, so the common usage pattern with callback looks like the follow-
ing:

1 <?php
2

3 $result = $container->getCache()->fetch('internal', 'value1', function() use ($container) {
4 //this code will be called only on cache miss
5 $value = $container['some.service']->doSomeHeavyOperation();
6

7 return $value;
8 }, filemtime('file.txt'), 3600);

4.9.2 Doctrine Wrapper

Some libraries can use Doctrine Cache as a cache layer. SiteSupra provides wrapper over it’s native cache,
DoctrineCacheWrapper, which you can use in the following way:

1 <?php
2

3 use Supra\Core\Cache\DoctrineCacheWrapper;
4

5 $wrapper = new DoctrineCacheWrapper();

4.8. Page routing 31

http://php.net/is_callable
http://doctrine-orm.readthedocs.org/en/latest/reference/caching.html

SiteSupra Documentation, Release 9.0.1

6 $wrapper->setContainer($container);
7

8 $wrapper->setPrefix('supra_native_prefix');
9 $wrapper->setSuffix('doctrine_cache_suffix');

10

11 // now you can use $wrapper anywhere in your code
12 // where instance of CacheProvider is required.
13 // Supra will respect ``prefix`` that you have set,
14 // and Doctrine will use ``suffix``

4.9.3 Cache Drivers and Current Implementation

SiteSupra has only one cache driver implemented at the moment. The driver called File stores cached data under
storage/cache folder. The driver creates separate sub-folders for each prefix you define. There are some
cache-specific CLI commands available for cache data management.

More cache drivers to come soon. You can always write your own driver just by implementing
Supra\Core\Cache\Driver\DriverInterface interface.

4.10 Blocks and Editables

4.11 Templating

SiteSupra uses Twig template engine. Nothing unusual, just few things worth to mention:

• There’s one Twig extension, called CmsExtension, that provides functions for preparing CMS JS/CSS assets,
and another one, called PageExtension, that manages CMS-specific functions and tags (more on that later);

• Views reside in package’s Resource\view folders, just like in Symfony;

• You can reference template inside a package and use shorthand syntax like {% extends
’SamplePackage:layouts/base.html.twig’ %}.

To reference and render a template you can always access Twig environment by calling
$container->getTemplating() or call renderResponse from your controller (package defaults to
current package here):

1 <?php
2

3 public function indexAction()
4 {
5 return $this->renderResponse('index.html.twig');
6 }

You can register a custom extension during package injection;

1 <?php
2

3 public function inject(ContainerInterface $container)
4 {
5 $container->getTemplating()->addExtension(new PageExtension());
6 }

32 Chapter 4. Developer’s Guide:

http://twig.sensiolabs.org/

SiteSupra Documentation, Release 9.0.1

4.11.1 PageExtension

To explain PageExtension, we need to discuss two things: PageExecutionContext and
BlockExecutionContext (make sure you’ve read SiteSupra Concepts first).

Both of these objects are simple container classes for objects defining current block or page being executed. Both of
them contain a Request object (plain Request for Blocks and PageRequest for Pages) and a Controller
object (BlockController and PageController accordingly).

Note: As other SiteSupra internal features, this is likely to change in the future.

This extension defines one filter, called decorate that works with internal HtmlTag instances, and a few functions
listed below:

• collection(), and list() resolve property to a collection, example would be writing {% for item
in collection(property(’image’, ’image’)) %};

• set() resolves property to a set;

• property() fetches single property from a Block or Page;

• isPropertyEmpty() checks if property value is empty;

• placeHolder() defines a placeholder (see Blocks and Editables and SiteSupra Concepts for more informa-
tion).

Every function in PageExtension is based on a custom node_class. This facilitates the process of dynamic
creation of block properties when template is parsed. BlockPropertyNodeVisitor creates block properties
on-the-fly.

4.12 Development and Production

4.13 Security

SiteSupra does not provide any kind of authentication for user part of CMS; it only provides authentication and user
management layer for CMS part, decoupled in separate SupraPackageCmsAuthentication (more on standard
packages in corresponding section). So, the documentation below applies only to CMS part, but you can always add
authentication to your website following this cookbook article.

SiteSupra security layer is based on Symfony security component.

4.13.1 Security Concepts and Configuration

Security is blindly bound to cms.prefix container parameter and secures all URLs beginning that. URL mapping
happens in CmsAuthenticationRequestListener. When visitor is not authorized yet, then the visitor is
being redirected to CMS login page.

Note: We are likely to extend security layer to both backend and frontend - stay tuned!

The second listener, CmsAuthenticationResponseListener, ensures that current Token is stored in user
session under the key defined by cms_authentication.session.storage_key parameter.

4.12. Development and Production 33

https://github.com/symfony/Security

SiteSupra Documentation, Release 9.0.1

SiteSupra dispatches AuthController::TOKEN_CHANGE_EVENT every time a new token is stored in the ses-
sion. Voters and ACL’s are enabled, but not used yet.

Default security configuration is stored in Supra\Package\CmsAuthentication\Resources\config\config.yml.
Apart from paths and services, it defines a shared user source (explained below), sets up user providers (bound to
CmsAuthentication:User entity), both combined into provider chain, and sets SupraBlowfishEncoder
as a default password encoder.

4.13.2 CLI Commands

SiteSupra provides some basic user management commands (for adding and removing backend user groups) allowing
you to manage users event if the database is empty. refer to Command Line Interface for more details.

4.13.3 User Source and User Provider

By default SiteSupra uses Supra\Package\CmsAuthentication\Entity\User
as base user entity and corresponding repository (which already implements
Symfony\Component\Security\Core\User\UserProviderInterface) as a user source. Again,
by default it is bound to current connection (please refer to Database (Doctrine 2) and EntityAudit if you want to learn
more on SiteSupra database layer).

4.13.4 Shared User Provider

While developing web project it is good to have a shared user database with some default user accounts in there or
share users between SiteSupra installations in production. This is possible by defining a new database connection in
main configuration file (supra\config.yml) under cms_authentication → users → shared_connection as shown
in example below:

1 cms:
2 active_theme: default
3 framework:
4 doctrine:
5 credentials:
6 hostname: localhost
7 username: root
8 password: ~
9 charset: utf8

10 database: supra9
11 cms_authentication:
12 users:
13 shared_connection:
14 host: localhost
15 user: root
16 password: ~
17 charset: utf8
18 dbname: supra9_shared_users
19 driver: mysql
20 event_manager: public
21 user_providers:
22 doctrine:
23 supra.authentication.user_provider.public:
24 em: public
25 entity: CmsAuthentication:User
26 provider_chain: [doctrine.entity_managers.public]

34 Chapter 4. Developer’s Guide:

CHAPTER 5

Cookbook Articles:

5.1 Creating Custom Block

This tutorial will help you to create a simple block with manageable HTML content.

Note: This tutorial assumes that you’ve already read the section about Blocks and Editables and already have sample
CMS Package configured.

5.1.1 Block Configuration

Create a class, that would represent your block configuration. It should extend abstract BlockConfig class:

1 <?php
2

3 namespace MySamplePackage\Blocks;
4

5 use Supra\Package\Cms\Pages\Block\Config\BlockConfig;
6

7 class MyTextBlock extends BlockConfig
8 {
9 }

Override configureAttributes method to define block title and description.

1 <?php
2

3 namespace MySamplePackage\Blocks;
4

5 use Supra\Package\Cms\Pages\Block\Config\BlockConfig;
6

7 class MyTextBlock extends BlockConfig
8 {
9 public function configureAttributes(AttributeMapper $mapper)

10 {
11 $mapper->title('My Text Block')
12 ->description('This block provides you WYSIWYG editor.');
13 }
14 }

35

SiteSupra Documentation, Release 9.0.1

5.1.2 Create Block Template

Create Twig file named my_text_block.html.twig in Resources/view/blocks/ directory with the fol-
lowing code in there:

1 <div>{{ property('my_content', 'html') }}</div>

This will dynamically create block property named ’my_content’ and link CMS WYSIWYG editor to that prop-
erty.

Note: You may override template name by calling $mapper->template(’MyPackage:path/to/file.html.twig’)
inside BlockConfig::configureAttributes() method.

5.1.3 Register Your Block in CMS

The last but not least step is register the block with CMS. If your package extends AbstractSupraCmsPackage,
then just override getBlocks method:

1 <?php
2

3 namespace MySamplePackage;
4

5 use Supra\Package\Cms\AbstractSupraCmsPackage;
6

7 class MySamplePackage extends AbstractSupraCmsPackage
8 {
9 ...

10

11 public function getBlocks()
12 {
13 return array(new Blocks\MyTextBlock());
14 }
15 }

Otherwise, this can be done by calling BlockCollection::addConfig() on package initialization finish.

1 <?php
2

3 namespace MySamplePackage;
4

5 use Supra\Core\Package\AbstractSupraPackage;
6

7 class MySamplePackage extends AbstractSupraPackage
8 {
9 ...

10

11 public function finish(ContainerInterface $container)
12 {
13 $blockCollection = $container['cms.pages.blocks.collection'];
14 /* @var $blockCollection \Supra\Package\Cms\Pages\Block\BlockCollection */
15

16 $blockCollection->addConfig(new MyTextBlock(), $this);
17 }
18 }

That’s all. Your block is now registered and should appear in site block list.

36 Chapter 5. Cookbook Articles:

SiteSupra Documentation, Release 9.0.1

5.2 Creating a CRUD

5.3 Creating Custom Controller

5.4 Writing Your Own Command

5.4.1 General Considerations

We would recommend to read Symfony’s guide to creating basic command prior to proceed further. SiteSupra mostly
follows the same approach with a few minor differences:

• A command must extend Supra\Core\Console\AbstractCommand (or implement
Supra\Core\DependencyInjection\ContainerAware), read more about that in Dependency
Injection chapter;

• There is no limit on where you can store your commands or what namespace are you using. SiteSupra does not
autoload commands, so you are free to choose your class structure.

Basic console command can look like shown below:

<?php

namespace Some\Your\Namespace\Command;

use Supra\Core\Console\AbstractCommand;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;

class FoobarCommand extends AbstractCommand
{

protected function configure()
{

$this->setName('foobar:do')
->setDescription('Does some foobar');

}

protected function execute(InputInterface $input, OutputInterface $output)
{

//foobar is happening here
}

}

Of course, you can use any of the helpers bundled in Symfony Console - tables, dialogs, and so on.

5.4.2 Registering New Command from Your Package

Let’s assume that you have a Package created (refer to Creating Sample CMS Package for package creating instruc-
tions). Now you can register a new command instance in package’s inject() method:

<?php

namespace Vendor\Package;
use Supra\Core\DependencyInjection\ContainerInterface
use Some\Your\Namespace\Command\FoobarCommand;
use Supra\Core\Package\AbstractSupraPackage;

5.2. Creating a CRUD 37

http://symfony.com/doc/current/components/console/introduction.html#creating-a-basic-command
http://symfony.com/doc/current/components/console/introduction.html#console-helpers

SiteSupra Documentation, Release 9.0.1

class FoobarPackage extends AbstractSupraPackage
{

public function inject(ContainerInterface $container)
{

//some magic here...

$container->getConsole()->add(new FoobarCommand());

//even more magic here...
}

}

After that, you can run your command with supra/cli.php foobar:do (shortcuts like supra/cli.php
f:d are working also).

5.5 Creating Sample CMS Package

38 Chapter 5. Cookbook Articles:

CHAPTER 6

CMS:

6.1 SiteSupra User Manual

Welcome to the SiteSupra CMS guide. This guide provides comprehensive information on how to organize your
SiteSupra site’s content and manage it easily. Free and open source, SiteSupra offers fast and easy website development
and makes website editing and administration stress-free thanks to intuitive visual CMS.

6.1.1 Log in

Start by logging into the admin panel of your website. Visit your site’s login page by placing “/backend” after your
domain name e.g. http://example.com/backend. Default login name is admin@sitesupra.org and password is
admin.

Initial view

After you logged in, you are on the site’s main page view. This is the Home page of your website. Here your creativity
can break out and let you build as lovely website as possible.

On the upper menu you can do following:

• Open the Dashboard;

• Open website’s structure or “Sitemap”;

• Open Page for editing

39

http://example.com/backend

SiteSupra Documentation, Release 9.0.1

We recommend you to check the demo of Home page and the Blocks to see most of the SiteSupra page and text
management features. However, ahead of jumping in and start editing, take a look at the website’s structure by
clicking Sitemap icon.

6.1.2 Site Structure

The initial site map is comprised of pages that show content.

40 Chapter 6. CMS:

SiteSupra Documentation, Release 9.0.1

6.1.3 Site Structure Management

To delete a page

Choose the page you have decided to delete and click the Gears icon. To delete a page click Delete and confirm
requested action by clicking Yes button.

6.1. SiteSupra User Manual 41

SiteSupra Documentation, Release 9.0.1

To add a new page

1. Click and hold ” + “ icon and drag & drop it to the required location.

2. When you hold and move the page around the Sitemap the drop location will be marked in blue.

42 Chapter 6. CMS:

SiteSupra Documentation, Release 9.0.1

3. After you drop the page on the desired location a page properties window appears. Specify page Title. You may
define Path which is a page name that appears in the page address.

4. Click Template to choose a page template you want. You can go through a wide array of templates.

5. When you make your choice, click Create button.

6. Open created new page and specify required content for page blocks. Then click Publish to the upper right of
the window.

6.1. SiteSupra User Manual 43

SiteSupra Documentation, Release 9.0.1

NOTE

If by an accident you have dropped your new page in a wrong place, you can easily change page order in the menu.
Simply drag & drop new page to the required place in Sitemap view.

Page Settings

Page Settings contains the page editing menu in the upper right pane and here you can specify following:

• Page Title - Page Heading

44 Chapter 6. CMS:

SiteSupra Documentation, Release 9.0.1

• Page URL - Page address

• SEO - additional parameters for website optimisation to help perform better in search results.

• Schedule publish - you can schedule a page to publish automatically in the future.

• Redirect - you can redirect your page visitors to other pages or external recources.

• More settings - additional page settings:

– Page status management (active or inactive)

– Page appearance in search results (Yes or No)

– Page appearance in Menu

– Page appearance in Sitemap

– Admission to translate the page

After you have made all the necessary changes, click Save to save changes. To publish final version of the page, click
Publish. If you wish to continue working with this page some other time, click Close.

Page status

While in a Sitemap view, above the page icons or folders can appear inscription Draft, which means that page was
changed, but the changes were not published. This inscription appears whenever you save the changes and close the
page with the Close button without Publishing.

6.1. SiteSupra User Manual 45

SiteSupra Documentation, Release 9.0.1

6.1.4 Main Toolbar options

General editing options are displayed at the top of the menu.

• Insert block - to insert new blocks on the page (see full description here [link to blocks])

• Page blocks - displays a list of elements available for editing;

• Page settings - to access and manage page properties

– Page Title

– Page URL

– Template

– SEO

– Schedule publish

– Redirect

– More settings

6.1.5 Main Menu Management

The main menu block automatically picks up pages located under the Home page and builds menu according to the
web site styles. If you want your main menu to have a page simply place it under the Home page in the SiteMap. You
can drag and drop the pages into this level or rename existing pages. Here’s how:

To change page order in the menu

1. You can access Site map by clicking Sitemap or All pages buttons on the page toolbar.

2. In the Site map, click and hold required page and drag it to the new location.

46 Chapter 6. CMS:

SiteSupra Documentation, Release 9.0.1

6.1.6 Blocks

Each page consists of several functional widgets, the blocks, which add functions and events to your website. You can
edit them by clicking and managing customisations in the block properties which opens on the right. For each block
there are different properties, for example, you can add images to the gallery block and set the links for social media
follow block.

To add new block

1. While in a Sitemap view, select the page you want to edit and click Open.

6.1. SiteSupra User Manual 47

SiteSupra Documentation, Release 9.0.1

2. Click Edit page button to the upper right of the window.

3. Click Insert block in the main toolbar, which appears on top of the page. The Insert block panel opens on the
left. Then select Features.

4. Click the block you need and drag & drop it to where you want it in the page.

48 Chapter 6. CMS:

SiteSupra Documentation, Release 9.0.1

5. Specify required content for the block properties. Then click Done and Publish the page.

To delete block

If you don’t need a certain block it’s easy to remove it from the page:

1. While in a Sitemap view, select the page you want to edit and click Open.

6.1. SiteSupra User Manual 49

SiteSupra Documentation, Release 9.0.1

2. Click Edit page button to the upper right of the window to start page customisation.

3. Click the block you want to remove. Block properties panel opens on the right side of window.

4. To remove a block click Delete block button.

50 Chapter 6. CMS:

SiteSupra Documentation, Release 9.0.1

5. Confirm your choice and click Yes.

6. To finish work and save changes, click Publish button to the upper right of the window.

To move blocks within a page

It’s easy to change location of the block on a page, here’s how:

1. While in the Sitemap view, select the page you want to edit and click Open.

6.1. SiteSupra User Manual 51

SiteSupra Documentation, Release 9.0.1

2. Click Edit page button to the upper right of the window.

3. Select the block you want to move by Clicking and holding it with the mouse and move it to the new location.
Make sure not to click the block as you will enter in a block editing mode where moving blocks isn’t possible.
When you hold and move the block around the page the drop location will be marked in blue.

4. To finish and save block repositioning changes within a page, click Publish button on right-top of the window.

IMPORTANT: Blocks are divided into two main categories:

• Global;

• Non-Global.

52 Chapter 6. CMS:

SiteSupra Documentation, Release 9.0.1

If a block is Non-Global, it will appear only on pages where it is added manually, but if a block is Global, it will appear
on all pages from selected template. These settings you can specify while creating or customising Templates.

6.1.7 Templates

Templates control how your website appears. SiteSupra template provides a method of integration between content
and blocks in a specific, controlled view. Site is created by first placing one or more blocks on a template and then
creating pages based on those templates. While each template can be configured separately, when adding new pages
and selecting template, page will consist of template’s specified design, layout and blocks within placeholders, so you
can significantly save the time by creating new pages and content.

While in a Sitemap view, you can switch to Templates editing mode:

If you want to create a page with unique set of blocks to implement original page design, you would need to create a
separate page template first so that other pages are not affected. Creating page template is easy, you can just duplicate
a page template you like.

For example, website consists of three simple pages: Home, Services and Contacts.

6.1. SiteSupra User Manual 53

SiteSupra Documentation, Release 9.0.1

Which in templates view will look like this:

54 Chapter 6. CMS:

SiteSupra Documentation, Release 9.0.1

Where pages are built on basis of:

• Page Home is created from template Home, where Home page content is inherit Header/Footer and Home
template content.

• Page Services is created from template Inner, where Services page content is inherit from Header/Footer and
Inner templates.

• Page Contacts is created from template Inner, where Contacts page content is inherit from Header/Footer and
Inner - the same as for Services.

6.1. SiteSupra User Manual 55

SiteSupra Documentation, Release 9.0.1

While creating pages, you can customise templates separately by adding necessary blocks to the placeholders.

6.1.8 Dashboard

You can open the Dashboard by clicking the icon on the upper left of the page.

The admin panel is very simplistic and from here you can manage Back-office Users, Files or return to Site Structure
Management.

56 Chapter 6. CMS:

SiteSupra Documentation, Release 9.0.1

Back-office Users

You can setup a user account for your website contributors and assign certain privileges. These privileges are known
as roles. The following roles exist in the SiteSupra:

• Admins: You can do everything including creating new users and assigning them access rights.

• Supervisors: As a supervisor, you can publish (and unpublish) documents on the website, and approve or
disapprove Contributor’s requests for publication.

• Contributors: As a contributor, you can create and edit content in the CMS. When your changes are ready to
be published on the website, they have to be approved by a Supervisor.

You can add new users by clicking “+” on the left side and drag-and-drop the icon to necessary role.

Then add User Name and E-mail, click Done. New user will receive invitation to become an admin, supervisor or
contributor of your site.

6.1. SiteSupra User Manual 57

SiteSupra Documentation, Release 9.0.1

Files

Program files (Files) app purpose is to gather all uploaded visual information files for further use on the website. This
app also allows you to create the directory tree in order to improve your work with files.

General options are displayed at the top of the menu:

• Upload - possibility to upload necessary files

• New Folder - allows to create new directory

• Delete - possibility to delete unnecessary files or directories

Also it is possible to add new files by dragging and dropping them to required folders. To view image details, click on
an image icon. From here you can also Download or Replace the file.

58 Chapter 6. CMS:

CHAPTER 7

Reference:

7.1 Standard Blocks

59

SiteSupra Documentation, Release 9.0.1

60 Chapter 7. Reference:

CHAPTER 8

Indices and Tables

• genindex

• search

61

SiteSupra Documentation, Release 9.0.1

62 Chapter 8. Indices and Tables

Index

B
Block, 32

Creating new block, 35

C
Cache, 31
CLI, 21
Command

Writing your own command, 37
Controllers, 29
Cookbook

Creating a CRUD, 36
Creating custom Controller, 37
Creating new block, 35
Creating sample CMS package, 38
Writing your own command, 37

CRUD, 36

D
Dependency injection, 15
Development and Production, 33
Doctrine, 25

E
Editable, 32
EntityAudit, 25

H
HTTP kernel, 13

I
Index, 1
Installation, 7

Apache, 9
nginx, 9
Requirements, 7

Internal: Page routing, 30
Internals

Cache, 31
Concept, 11

Database, 25
Dependency injection, 15
HTTP kernel, 13
Standard packages, 13

P
Package

Creating sample CMS package, 38
Page Routing, 30
Promo, 5

Q
Quickstart, 11

R
Reference

Standard blocks, 59
Routing, 28

S
Security, 33
SiteSupra Concepts, 11
Software Requirements, 7

T
Templating, 32
Tools

CLI, 21

63

	About SiteSupra:
	Installation:
	Quick Start:
	Developer's Guide:
	Cookbook Articles:
	CMS:
	Reference:
	Indices and Tables

